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REPORT NO. 876

THE STABIWI’Y OF THE LAMINAR BOUNDARY’ LAYER ~’ A COMPRESSIBLE FLUID

BF LESTERLEES

SU3131ARY

The present paper is a continuation of a i%eoretical inresti-
gation Oj-the stability of the laminar boundary layer in a com-
pressible $uid. An approrima~e estimate for the minimum
critical Reynolds number ReCT~~x,or stability limit, is obtained

in terms of the distribution of the kinematic ri.scody and the—

product of the mean density ~ and mean cortieity ‘A* acrow the
dy”

boundary layer. With the help of this estimate jor l?o.,~ti

it is shown that withdrawn”ng heat -from the f?uid through the
solid surface increases Rff and stabilizes the $owr as

‘mix

compared with the $OW ocm an ins-dated surface at the same
Mach number. Conduction of heat to the jluid through the

solid surface has exactly the opposite e~ect. The ralue of R$w~iz

for the insulated surface decreases as the Mach number in-
creases=for the case of a uniform free+trea m re[ocity. Thege
general concksion~ are wpplemented by de~ailed calculations
oj the curres of ware number (inrerse ware kngth) against
Reynolds number for the neutral disturbance.s for 10 representa-
tive cases of insulated and noninsulated surfaces.

So far as laminar stability is concerned, an important difer-
ence e.risf~ between the case of a subsonic and supersonic free-
strearn reloeity outfi”de the boundary layer. The neutral
boundary-layer disturbances that are signi$cant for laminar sta-
bility die out exponentially with dis(ance from the solid surface;
therefore, the phase relocii!y c* of these disturbances iz subsonic
relatire to the free-s~ream ce~ocity ~—or UO<—6*< p,

7u~
where ~ is the local sonic relocity. Then ~=.llo<l

(where 310 is jree-stream Mach number), it ~~llows that
()~G*~~* ~aq and any larninar boundary-layer$ow is ultimately
unstable at s-uj%kit fly high Reynolds numbers because of the
destabilizing action of uiscosity near the solid surface, as
explained by Prandtlfor the incompreseible$uid. When MO> 1,

is large enough negat ire$y, the rate at which energy passes from
the dis~urbance to the mean $OW, which is proportional to

-C*[+4%)1.=C*, can always be large enough to coun-

terbalance the rate at which energy passes from the mean $OW
to the disturbance because of the destabilizing action of viscosity
near the solid surface. In that case only damped disturbances
exist and the laminar boundary layer is completely stable a~ all

Reynolds numbers. This condifiion occurs when the rate at
which heat is withdrawn from the$uid through ~hesolid surface
reaches or exceeds a critical ralue that depends only on the
Mach number and the propertiie~ of the gas. Calculations.
shou~that for MO>3 (approx.) the Zaminar boundary-layer$ow
for thermal equilibrium-where the heat conduction through the
solid surface balances the heat radiated from the surface—i~
cornp[e~e[y stable at all Reynolds numbers under free-j’ight
conditions if the free-strea m relocity is uniform.

The results of the analysis of the stability of the [aminar
boundary layer must be applied with care to discussions of
transition; howewr, withdrawing hea~ from the jluid through
the solid surface, for examp[e, not only increases R8C,~~8but

also decreases i’heinitial rate of amphjication of the se~-ezcited

disturbances, which is roughly proportional to 1 /3~=.

7’hu.Y,the e~ect of the thermal condifiions at the solid swja.ce on

the transition Reynolds number R6,, is similar to the e$ect on

Ren~f.. A comparison betzceen ~his conclusion and experi-

mental in res+igations of the e~ect of surface heating on &ansi-
tion at low speeds shows that the results of the present paper
gire the proper direction of this e~ect.

The extension of the results of the stability analysis to larninar
boundary-layer gas $OWS with a pressure gradient in the
direction of the free stream is discussed.

INTRODUCTION

By the Wmreticd studies of 13eiseuberg, Tolbnien,
S4dicb.ting, and Lin (references 1 to 5) and the careful
experimental investigations of Liepmann (reference 6) and
H. L. Dryden and his associates (reference 7], it has been
deiiniteIy established that. the flow- in the laminar bounc{ary
layer of a viscous homogeneous incompressible fluid is un-
stabIe above a certain characteristic critical Reynolds
number. When the level of the disturbances in the free
stream is low, as in most cases of teckicaI interest, this
inherent instability of the laminar motion at sticiently
high Reynolds numbers is responsible for the ultimate
transition to turbulent flow in the boundary layer. The
steady laminar bouuclary-Iayer flow would always represent
a possible soIution of the steady equations of motion, but
this steady flow is in a state of unstable dynamic equilibrium
above the critical Reynolds number. Self-excited dis-
turbances (Tolkien waves) appear in the flow, and these
disturba~ces grow large enough eventuality to destroy the
laminar motion.
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‘Ile question naturally arises w to how the phenomena
of kninar instability and transition to turbulent flow are
modified when the fluicl velocities and temperature varia-
tions in the boundary Iayer are large enough so that the
compressibility and conductivity of the fluid can no longer
be neglected. The present paper represents the second
pb ase of a theoretical investigation of the stability of the
laminar boumkry-layer flow of a gas, in which the com-
pressibility and heat conductivity of the gas as welI as its
viscosity are taken into account. The first pm% of this work
was presented in reference 8, The objects of this investiga-
tion are (1) to cletermine how the stabiIity of the laminar
boundary layer is affected by the free-stream Illach number
and the thermaI conditions at the solicl boundary and (2) to
obtain a better understanding of the physical basis for the
instability of laminar gas flows. In this sense, the present
study is an extension of Lhe Tollmien-ScMichting analysis of
the stability of the laminar flow of an incompressible fluid,
but the investigation is also concerned with the general
question of bounclary-layer disturbances in a compressible
fluicl and their possible interactions with the main external
flow.

With minor
the same as
quantities are
corresponding

SYMBOLS

exceptions the symbok used in this paper are
those introduced in reference 8. Physical
denoted by a~ asterisk, or star; whereas the
noncIimensional quantities are unstarred.

A bar over a quantity denotes mean value; a prime denotes
a fluctuation; the subscript O clenotes free-stream values
at- the “edge” of the boundary layer; the subscript 1 denotes
values at the solid surface; and the subscript c denotes
values at Lhe inner “critical layer,” where the phase velociiy
of the disturbance equals the mean ffow velocity, The
free-shream values are the characteristic measures for all
nondimensional quantities. The ch a.racteristic le~gtb meas-
ure is the bounds.ry-Iayer thickness 3, except where otherwise
indicated, Note that in order to conform with standard
notation. the symbol 6 for boundary-layer thickness is
unstarred; whereas the symbols ~* and 0 are used for
boundary-layer displacement thickness and boundary-layer
momentum thickness, respectively.
** distance along surface

Y* distance normal to surface
t* time
U* component of velocity in x*–direction

~
~=~

u~*
V* component- of veIocity in y*–direction

*f
~=$

+* stream function for mean flow
P* density of gas

P* pressure of gas
T“ temperature of gas
~+ laminar shear stress

ordinary coefficient of viscosity of gas
kinematic viscosity of gas (M*/P*)
thermal conductivity of gas
specific heat at constant volume
specific heat- at constant-pressure
gas constant per gram
ratio of specific heats (co/c,); 1.405 for air
complex phase velocity of b oun clary-layer

disturbance
wave Iength of boundary-Itiyer clisturbance
bouncktry-layer thickness
boundary-layer displacemen~ thiclincss

/ P. \
(j ( l—pw)dy*

o )

boudary-layer momentum thickness

(J

.
pw(l-w)dy*

o )

~,al-e number of bouncIa.ry-Iayer clisturbfi.nce
(27r/A*)

()
——
pfi*uo*C!

Reynolds number -==-
Plo

-. —
po”uo*e

R@==
PIO*

M.

(-)

Mach number -==~~
+A’ * TO*

G- ()
7

I?randtl number c, !%~o*

1. PRELIRIINARY CONS1DERATIONS

In the first phase of this investigation (reference 8) Lhc
stabdity of the laminar boundary-layer fio~v of a gas is
analyzed by the method’ of small perturbations, whit% wzs
already so successfully utilized for the study of the stubilit,y
of the laminar flow of an incompressible Quid. (S-w refer-
ence 5.) By this method z nonsteady gas flow is investigated
in which all physical quantities cliffer from their -dues in a
given sieady gas flow by smaII pert.llrbations that are func-
tions of the time and space r.oorclinates. This nonslmcly
flow rnusi satisfy the complete gas-dynamic equations of mo-
tion and the same bounclary conclit.ions as the giwn skady
flow. The question is whether ~he noustcady flow dmnps to
the steady flow, oscillates about it, or diverges from it with
time—that. is, whether the smaII perturbations are damped,
neutral, or self-excited disturbances in time, tincl thus whether
the given steady gas flow is stabIe or unstatk. The analysis
is particularly concerned with the conditions for the oxis[ence
of neutral clisturbances$ which mark the transition from staMe
to unstable flow and define the minimum critical RcynoIds
number.
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In order to bring out some of the principal features of the
stability problem without becoming in-rolved in hopeless
mathematical complications, the solid boundary is taken as
two-dimensional and of negligible curvature a~d the boundary-
layer flow is regarded as pIane and essentially para~el;
that is, the velocity component in the direction normal to
the surface is negligible and the velocity component parallel
to the surface is a function mainly of the distance normal
to the surface. The smaIl disturbances, which are also tn-o-
dirnensional, are analyzed into Fourier components, or normal
modes, periodic in the direction of the free stream; and the
ampIitude of each one of these partiaI oscillations is a functio~
of the distance normal to the solid surface, that is}

ZL*r=@f (V)eiti(z-et)

In the study of the stability of the Iaminar boundary layer,
it \\ill be seen that only the local properties of the “pandlel”
flow are significant. To include the ~ariatiort of the mean
velocity in the direction of the free stream or the velocity
component normal to the solid bounda~ in the probIem
wouId lead only to higher order terms in the dii7erentiaI
equations go-reining the disturbances, since both of these
factors are inversely proportional to the local Reynolds num-
ber based on the boundary-layer thickness. (See, for ex-
ampIe, reference 2.) By a carefuI analysis, Pretsch has
shown that wen -with a pressure ~aclie~t in the direction of
the free stream the local mean-~ elocity distribution alone
determines the stability characteristics of the IocaI boundary-
Iayer flow at large ReynoMs numbers (reference 9j. Such
a statement appIies only to the stability of the flow within
the boundary layer. For the interactio~ between the bound-
ary Iayer and a main “e~ternal” supersonic flow, for example,
it is obviously the variation in bounclary-]ayer thickness and
mean velocity along the surface that is significant. (See
reference 10.)

The aforementioned considerations also Iead quite natu-
rally to the study of incli-ridual partial oscillations of the
form -f(y) ei~(’-”j, for mhich the differential equations of
disturbance do not contain r and t e.splicitly. These partiaI
osc~ations are idea~y suited for the study of i.RstabiIit-y, for

in order to show that a flow is unstable it is tmnecessary to
consider the most general possible disturbance; in fact, the
simplest will sufiice. IL is only necessary to show that a
particular disturbance satisffig the equations of motion and
the boundary conditions is self-excited or, in this case, that

‘ the imaginary part of the complex phase ~elocity c is positive.
In reference S the differential equations governing one

normai mode of the disturbances in the Iaminar bounda~
layer of a gas -were deri~ed and studied -rerj thoroughly.
The complete set. of sohtions of the disturbance equations
was obtained and the ph~sical boundary concLitions that.
these soIutions satisfy were in~estigated. lt n-as found that.
the final relation between the values of c, a, and R that
determines the possible neutral disturbances (limits of
stability) is of the same form in the compressible fluid ZLSin
the incompressible fluid, to a fist approximation. The basis

for this result is the fact that for Reynolds numbers of the
order of those encountered in most. aerodynamic problems
the temperature disturbances have only a negligible effect
on those particular veIocity solutions of the disturbance
equations that depend primarily on the viscosity (viscous
soIutions). To a first approximation, these -riscous solutions
therefore do not depend directly on the heal conductivity
and are of the same form as in the incompressible fluid,
~xcept that they in-roIve the Re-ynolds number based on the
kinematic tiscosity near the soIid boundary (-where the vis-
cous forces are import ant.) rather than in the free stream.
In this fist approximation, the seconcI viscosity coefficient,
-which is a measure of the dependence of the pressure on the
rate of change of density, does not affect the stability of the
Iaminar bouncl~ry layer. From these results it was inferred
that aL Iarge Reynolds numbers the infiuence of the viscous
forces on the stability is essentiaHy the same as in an incom-
pressible fluid. This inference is borne out by the results
of the present paper,

The influence of the inertial forces on the stability of the
Iaminar boundary la~er is reflected in the behavior of the
asymptotic intiscid solutions of the disturbance equations,
which are independent of Reynolds number in first approm-- ‘-
mation. The restits obtained in reference S show that the
behavior of the inertial forces is dominated by the dishibu-
tion of the produci of the mean density and mean -rorticity

P~—~across the boundary Iayer. (The gradient of this quan-

d dw

()
tity, or ~Y PG , which pIays the same roIe as the gradient

of the -vorticit.y in the case of an incompressible fluid, is a
measure of the rate at. which the x-momentum of the &n
layer of fluid near the critical Iayer (where w= c) increases,
or decreases, because of the transport of mome~tum by the
disturbance.) In order to clarify the behavior of the inertiaI
forces, the Iimi&ing case of an inviscid fluid (R+ ~ ) is studied
in detail in reference S- The following general criterions are

d dw

()
P— ranishes forsome~alueobtained: (1) If the quantity ~Y dv

of w> I —+, then neutral and self-excited subsotic disturb-
~o

anees e-xist, and the inviscid compressible flow is unstable.

()
(2] If the quantity $ P% does not vanish for some value

1
of w> 1—~ then W subsonic disturbances of finite -wave

length are damped and the inviscid compressible flow is
stable. (Outs;de the boundary .Jayer, the relat i-ve velocity
between the mean flow and the r-component. of the phase
velocity of a subsonic disturbance is Iess than the mean sonic
velocity. The magnitude of such a disturbance dies out ex-

—.c

ponentiaI1-y with distance from the solid surface.) (3) In
generaI, a disturbance gains energy from the mean flow

d dw

()
if~qj is positive at the critical layer (where w~=c) and

[%31W=C<”-
loses energy to the mean flo~ if ~Y

,
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The generaI stability criterions for inviscid compressible
flow give some insight into tlte effect of the inertial forces on
the stability, but they cannot be taken over bodiIy to the
real compressible fluid. Of course, if a flow is unstable in
the limiting case of an infinite Reynolds number, the flow is
unstuble for a certain finite range of Reynolds number. A
compressible flow that is stable when R+ co~however, is not
necessarily stable at alI finite ReynoIds numbers when the
effect of viscosity is taken into account. One of the objects
of the present paper is to setlIe this question.

On the basis of the stability criterions obtained in reference 8,
some general statements were made concerning the eflect of
thermaI conditions at the solid boundary on the stability of
laminar boundary-layer flow. It is concluded from physical
reasoning ancl a study of thG equations of mean motion

d dw

()
that the quantity ~ ‘d~ vanishes for some value of w> O

if bT
()— ~ O, that k, if heat is added to the fluid through the
.l!i , –

(7
solid surface or if the surface is imndated. If k >0by ,

and is sufficiently large, that is, if heat is withdrawn from the
fluid through the solid surface at a sufficient rate, the quan-

d dW

() (?

a
tity ~ p~ never vanishes. Thus, when — s O, thedy ,–

laminar boundary-layer fiow is destabilized by the action

of the inertiaI forces but stabilized through the increase of

kinematic viscosity near the solid surface. When
(,7

~ ,>0,

the reverse is true. The question of which of these effects is
predominant can be answered only by further study of the
stability problem in a real compressible fluid,

ln the present paper this investigation is continued along
the following lines:

(1) A study is made of how the general criterions for
instability in an inviscid compressible fluid are modified by
the introduction of a small viscosity (stability at very large
Reynolds numbers).

(2) The conditions for the existence of neutraI disturb-
ances at large Reynolds numbers are examined (study of
asymptotic form of relation between eigen-values of c, a,
ant] R).

(3) A relatively simple expression for the approximate
value of the minimum critical ReynoIds number is derived;
this expression involves the local distribution of mean
velocity ancl mean temperature across the bounclary layer.
This approximation will serve as a criterion from which the
effect of the free-stream Mach number and thermaI con-
ditions at the solid surface on the st.aMity of kminar
bounc~ary-layer now is readily evaIuated. The question of

the relative influence of the kinematic viscosity and the

distribution of ~~~ on stability WOUMthen be settled.

(4) The energy balance for smalI disturbances in the red
compressible fluid is considered in an attempt to ckmify the.
physicaI basis for the instability of laminar gas flows.

(5) In order to supplement the investigations outlined
in the four preceding paragraphs, detailed calculations me
made of the limits of st.abiIit.y, or the curve of a against 1?
for the neutral disturbances for several representative cases
of insulated and noninsulated surfaces. The resuIts of the
calculations are presented in figures 1 to 8 and tabhx I
to IV. The method of computnkion of the stabiIity limits is
briefly outlined in reference 8, although the calcuImtions
were not carried out in that paper.
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IrI the present investigation the work of Heisenberg
(reference 1) and Lin (reference 5) on the stability of a real
incompressible fluid is naturalJy an indispensable guide. ID
fact, the methods utilized in the present study are analogous
to those developed for an incompressible fluid.

The present paper is concerned only with the subsonic
disturbances. The ampIitude of the subsonic disturbance
dies out rapidly -with distance from the soLid bouncIar-y. In
other worcls, the neutral subsonic disturbance is an “ eigen-
oscillation” con.tlned mainI-y to the boundary layer and exists
onIy for discrete eigen-dues of c, a, ancl R that determine
the limits of stabdity of Iaminar boundar-y-Iayer flow. Dis-
turbances classified in reference 8 as neutral “supersonic,”
that is, d~twrbances such that the reIative velocity between

the x-component of the phase velocity of such a clisturbmwe
and the free-stream ~elocity is greater than the local mean
sound speed in the free stream, are actuaIly progressive sound
-waves that impinge obliqueIy on the bounclary layer and
are refIected wi&h change of amplitude. For disturbances
of this type the -wave length a~d phase velocity are obviously
compIet ely arbitrary (eigen-values are continuous), and these
disturbances have no significance for boundary-layer
stability.

lThen the free-stream velocity is supersonic (.310> 1),the
subsonic boundary-Iayer disturbances must satisfy the re-

quirement that ~–c*<~ or c>l –&O (for Mo<l, cZO).

N’ow-, by anaIogy with the case of an incompressible fluid it
is to be mpected that for values of c greater than some
criticaI ~alue of cO,say, alI subsonic disturbances are damped.
Thus, when MO> 1, there is the possibility that, for certain
mean veIocity-temperature distributions across the boundary
layer, neutraI or seIf-excited disturbances satisfying the
differential equations of motion, the boundary conditions,

and ako the physical requirement that c> 1—-& cannot be

found. In thak e-rent, the Iaminar boundary flow is stabIe
at all Re+ynoIds numbers. This interesting possibfity is
investigated iu the present paper.

2. CALCULATION OF THE LIMITS OF STABILITY OF LA311NAR
BOUNDARY LAYER 1X A f’ISCOUS CONDUCTIYE GAS

In order that the complete system of solutions of the differ-
ential equations for the propagation of small disturbances
in the laminar boundary layer shall satisfy the physical
boundary concbtions, the phase velocity must depend on the
wave Iength, the Reynolds number, and the Mach number
in a manner that is determined entirely by the local distribu-
tion o{ mean -relocity and mean temperature across the
boundary Iayer. In other words, the only possible subsonic
disturbances in the laminar boundary layer are those for
which there exists a deiinite relation of the form (reference 8)

c= c(a, R, M02) ._(l)

Since a, R, and .ll~’ are real quantities, the relation ~1) is

equivalent to the two relations

c,= c,fa, R, .V;2) (la)

ci=ci(a, R, .lfoz) (lb)

The cur~e c,(cr, R, MO?=0 (or CK=a(R, M;)) for the neutraI
disturbances gkes the limits of stability of the laminar
boundary layer at a given ndue of the Mach number. From
this curve can be determined the -ralue of the Reynolds
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value of c=co at which (1-2,) u=O.MO(k is small) is a measure of the stability of a giwn
laminar bouudary.layer flow.

number ?.M1OWwhich disturbances of all wave lengths are
damped and above which self-excited disturbances of certain
wa~e lengths appear in a given laminar boundary-layer fiowT.

In reference 8, it is shown that the relation (1) between the
phase velocity and the wave length takes the folIowing form:

E(a, c, M?) =F(z) (2)

k equation (2), F’(z) is the Tietjens function (reference 1I)
defined by the. rektion

()

aRwC’ 113
z= — (?/.-J/JVc (4)

and the quantity HI ,Y(1Jis the ~anke] function of the fkt kind

of order j{. The prime denotes differentiation with respect
toy, The function E(a, c, .M$), which depends only on the
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(b) Noniusulated surface. .MI=O.70.

FIGUIrE3.—&mdU~ed,

asymptotic inviscid solutions PIand p2 (section 4 of refercnce18)
and not on the Reynolds number, is defined as folIows:

Pij=dYJ 1 (6)

~,j=l,2

and VI and Vi are the coordinates of the solid surface and the
“edge” of the boundary layer, respectively.

The Tietjens function was carefully recalculated in refer-
ence 8, and the reaI and imaginary parts of the function

@(+=1_&2)are plotted in figure 9, (The functio~ @(z) is

found to be more suitable than F(z) for the ac~ual calcula-
tion of the stability limits.)
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The inviscid solutions p, and p, were obtained
series in a2 as follows (section 6 of reference 8):

3’41

M power

(7]

(8)

and
ho=l.O

and for na 1

1s

Y (~—c)~
M: dy y12.+ (y;c,Mo2)dy (10)

VI

The lower limit in the integrals is taken at the surface
merely for convenience. ‘PThen y>yc, the path of integra-
tion must be taken below the point Y=Y. in the compIex
y-pIane. The power series in az is theu uniformly conver-
gent for any finite value of a.

At the surface, the in-riscid soIutions are readiIy evaluated

ql’ = –: (T,–M02C’)
J

At the “edge” of the boundary layer, the inviscid solutions

are most conveniently expressed as follows:

p.,z= (1 –c) >0 CY2’H,.[C,M*) 1

Er,.-,(c,ML12)=
[ 1

1–M,’(1-C)- -’
(1–c)’

h~n’(y~;c,MO’j

K2n(c,M;’) =
[ 1

I—wo’(l- c)’ -1
(1–c)’

I&,’ (y,;c,MJ)

KO=l.O

(13)
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With the aid of equations (11), the expression for
E (al c, M02) can be rewritten as follows:

E(C?,C,MJ) =*
WI‘( 922’+ @qzz)

(14)
WI!(9*2’+ p$oy.)+: (@l~’+&olJ

where
‘wl’(Yc-Yl)_lx(c)= ~ - (15)

The relation (2) between the phase velocity and the wave
length is broughi into a form more suitable for the calculation
of the stabiIity limits by making use of the fact that for real

values of c the imaginary part of E’ (a, c, M02) is contributed

largely by the integral K1 (c, M/). (The procedure to be
followed is identical with that used by Lin in the limiting
case of the incompressible fluid (reference 5, part HI).)
Define the function 0(z) by the relation

(16)

I
~+~u=y

where

and for nz 3

and

When c is real,

Then,
(U+io)@(z) =*l=(l+A) l+~(u+io) -

where

“’’(:$”+%2)
u+iv=l+T.

Equation (17) is equivalent to the two real rektions

(1+-X)U . ___
@@)=(~+~u)2+k2u*

@,(z) =(l+x)
[ 1

U(l+AU)+M?
(l+ A?l)’+m’

(17)

(18)

(19)

(20)

The red ancl imaginmy parts of @ (z) are p~otted agains~ z in
figure 9.

The clominant term in the imaginary par~ of the right-hand
side of equation (18), which involves K, (cl M02), is extracted

by means of straightforward aIgebraic transfornmtious. Re-
lation (18) becomes

for those values of a and c that occur in the stabiIity calcuktions. (This approximation is
imaginary part of the integral K] (c, Mo2) is readily computed. It is fou~id that

I. P. KI(c, MOZ)=–m
F3wKw..c

‘-”w%-%)

(22b)

ustified later in appendix A,) Tho

(23)

hTow k(c) is generally quite small, therefore @i(z) can be taken equaI to V(C) and @,(z) can be taken equaI to u m a

zerotlh approximation. From equations (19) and (2o), when c is reaI,

@i(o) (~(o)) =~= —

%%&%)
(24)

~(o)=@,(o)(z(o)) (25)

By equation (24), z(o) is reIated to c with the aid of figure 9; and by equation (25), u(o) is aIso related to c. The quan[it.y cik’
is connected with c by means of the identi~y

Vc (–)2?011g~R =
W.’(l+ky c

(26)

and the corresponding values of a are obtained from equation (21) (slightIy transformed) by a method of successive
approximations. Thus

(27)
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where

‘=% ’’+-%3)

{The syml-ds .Ilk and f~t now designate the real parts of the

integrals Mk and N...) The iteration process is be~gun by

taking a suitable initial value of a on the right-baud side of

equation (27). The metbocls adopted for computhg these

in tefywds when the mean veIocity-t emperature profile is

known are described in appenclkes A to C.
For greater accuracy, the values of z and a for a given real

value of c are computed by successive approximations. From
equations (19) and (20),

(28)

The value of L’is always approximated by relation (24).
Cur-i-es of wa-re number against Reynolds number for the

neutral disturbance have bee~ caIcnIatecI for 10 representa-
tive cases (fig. 4), that is, i.rdated surface at Mach rmmbers
of O, 0.50, 0.70, 0.90, 1.10, and 1.30 ancl heat tram~fer across
the solid surfare at a llach number of 0.70 with vaJues of the
ratio of surface temperature to free-stream temperature T1 of
0.70, 0.80, 0.90, and 1.25. (It is founcI more desirable to base
the nondimensional wa-re number and the Re.ynokls number
on the momentum thickness 6, which is a clirect measure of
the skin friction, rather than on the bounclary-la-yer thickness
8, which is some-wh%t indefinite.)

In fi.~re 5 the minimum critical Reynolds number
R,=,mf~,or the stability limit., is pIottecl against Mach uum-

ber for the insulated surface; and in figure 6(a) ROCrmiRis

plottedagainstT, for the cooled or heated surface ab a Mach
number of 0.70. The marked stabilizing influence of a with-
(kawal of heat from the ffuid is clearl$y evident. Discussion
of the pb-ysicaI significance of these numerical results is
reser~ed until after general criterions for the stability of the
laminar boundary Iayer ha~e been obt~ined.

3. DES~ABILIZING INFLUENCEOF l’ISCOSITY AT VERY LARGE
REYNOLDS NUMBERS ; EXTEXSION OF HEISENBERG’S
CRITERION TO THE C031PRESSIBLE FLUID

The numerimd cakuktion of the limits of stability for
several particular cases gives some indication of the effects
of free-stream lkch number and thermaI conditions at the
solid surface on the stabiIity of the laminar boundary layer.
It WOUIC1be very desirabIe, howe~-er, to establish general
criterions for Iaminar instability. For the incompressible
fluid, Ileise~berg has shomn that the infiuerice of viscosity is
generally destabilizing at very Iarge R eynolck numbers
(refermce 1). His criterion can be stated as follows: If a
neutral disturbance of no.nwmish.irg phase velocity and
finite via~e length exists in an inviscid fluid (1?- ~ ) for a
given mean -relocity c{istributio-n, a disturbance of the
garfie ware Zcngtk is unstable, or self-exeit ed, in the real fluid

at ~ery large (but finite) ReynoIds numbers.
The same co~clusion can be draw-n from Prandtl’s discussion

of the energy baIance for small disturbances in the laminar
boundary layer (reference 12).

Heisenbc&s criterion is established for subsonic clisturb-
antes in the Iaminar boundary Iayer of a compressible fluid
by an argument quite simiIar t.o thtit which he gave originally
for the incompressible fluid and which was later supple-
mented by Lin (reference 5, part HI). .It ~ery Iarge
Reynolds numbers, the relation (1) between the phase
velocity and the -wa~~elength can be considerably simplified.
Khen x is finite and e does not vanish, IzI>>1 at large
ReynoIds numbers. The asymptotic beha~ior of the Tietjens
function F(z) as [zI+ ~ is given by (reference 5, part 1)

(!/1–YC)NZ) ==
/~ LY;C

and the relation (I) becomes

w-here i?(ci, c, MOY)is gi~en by equation (14).
Suppose that a neutral clisturbance of non-mnishing

the in-riscid fluid (Limit@~ case of an infinite Reynolds
number). The phase velocity c is a contkuous funct ion of R,
and for a disturbance-of gi-ve~ wave number a, the value of c
at very large Re-moIds numbers -w-illdiflw from c: by a small
increment Le. Both sides of ecluation (31) can be developed
in a Taylor’s series in Ac, and an expression for Ac can be
obtained as folIows:

‘e; [l~O(Ae)]

‘Ic ci*— C*
c<

The boundary condition

9,,’(CY.,c,, M02)+- /3.@, (a,, c*, M,’)= o (33)

must be satisfied for the inviscid neutral disturbance, and
the function li’~(as, c,, Maz) vanishes (equation (14)). Recog-
nizing that

?L171 > 1

(-)ac Cs.Us
d

E
~z — c~

~c~

reduces equation (32) for Ac to the form

From equation (14),

(34)

(35)
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()By equations [12) and the bouncky condition (33), the quantity b%, ~,,~, is evaluated as foIIol\7s:

where the primes now denote differen~iation with respect to c. ()
For small values of c, and a,, the quantity ;~~l ~.,d, is given

approximately by the relation

()ZLE’, CS2

[

2–M*2(1-C,)Z—— ~.-f-K1’ (es,3102)
be .,,U,=—T

—— ——
a,(l —c,)3Jl-Mo~(l —C$) 1

and the expression for Ac is

T,
Ac= —

a. Ill —M02(I —cJ*e’C’4

/
R ~2-M02(1-cJZ

\ %<cs (1–C,)3
+ a, 41 –MQ_’(1 –mK,’(es, M,z)

‘(c’’02)=-fi+&[$ G)lu=.’’n’-i”)+O (’)

(37)

(39)

w?]
Since the quanti~Y @ 1’ ,,=,, ~ranishes (reference 8), differentiatio~~ of equation (39) gives

(A{%[EF)I.=C})C.C$ ’l’’C-’+’(’)’)
(40).K,’ (c,, M02) ‘a+ bc (W:)3 CZy T

Thus, K*’ (c,, M?) is approximately real and positive for

small values of c$. With c.>1–j&, I. P. Ac must also be

posit ive (equation (38)); therefore, a subsonic disturbance

of wave length As# O; which is neutral in the inviscid com-

pressible fluid, is self-excited in the reaI compressible fluid

a~ very farge (but finite) Reynolds numb em.

In reference 8, it was proved that a neutral subsonic
boundary -]ayer disturbance of nonvanishing phase velocity
ancI finite Jiwve ]ength exists in au inviscid compressible fiuid

Citl)()d P~yonly if the qucmhi~y ~ vanishes for some value. of
.
1

w>l ----- If this condition is satisfied, then self-excited

subsonic disturbances also exis ~ k the fluicl; ancIthe kminar
boundary Iayer is unst tiblc in the limit”mg case of an inilnite

Reynokls number. By the extension of Heisenberg’s

criterion to the compressible fkid, it can be seen thatj far

from st a.bilizing the. flow, the small viscosity in the reaI fluid

has, OD the contrary, a destabilimkg influence at very large

Reynolds numbers. Thus, any laminm boundary-layer

flow in a viscous conductive gas for which the cjuantity

c1 dw
( .)& P&- vanishes for some. vaIue of w> 1-- & is unstable aL

-o
-.” .

sufficiently high (but finite) Reynokls numbers.

()
Unless the condition ~ P~~ =Oforsomcvallle w>+-~~

is satisfied, all subsonic clisturkmnccw of finilc wave Irnglll are
damped in the limiting case of infinite RPynolds mmlberj and
the inviscid fiow is stable< Since the effec~ of ~isco~i~y is

clestabiliz~ng at very large Reynolds nunkrs, hc)we ~cr, a
laminar boundary flow that is stable i~nthe limit of infu~itc
Reynokknumber is not necessarily stal}le at. large R[’ynol(k
numbers when the viscosity of the fluid is consiclrrcd.
(See fig. 4 (1).) In fact, for thf’ incomprwsible flui(l, IJin
has shown that, rvery laminar boundary-layrr flow is IJIE

stable at. sufficiently high Reynolds numbers, whether or no L

the ~-ortkity gradient’~ vanishes (ref(~rcnce 5, pmi. III).

In order-lo set (le this question for the emnprcssihk fluid in
generaI terms, the relation (1) bet.ween the complt’x pllasc
velocity and the wave kng[h LI1huge Rcynohis mlmh~rs

d du,

()
must now ‘be studied for flows in w~ch the quantity Z; p~

does not ~anish for any value of w> 1— ~-.
M o
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4 STABILITY OF LA311NAR BOUNDARY LAYER AT LARGE
REYNOLDS XUSIBERS

The neutral subsonic disturbance marks a possible
“boundary” between the damped and the self-excited
disturbance, that is, between stable and unstable flow.
Thus, the general conditions under which self-excited dis-
turbtinces exist in the laminar boundary Iayer at large
Reynolds numbers can be determined from a study of the
kharior of the eur-re of a against R for the neutral clisturb-
antes. Nlen the mea~ free-stream velocity is subsonic
(MO< 1), the physics] situation for the subsonic disturbarices
at large ReyDokk numbers is quite similar to the analogous
situation for the incompressible fluid. The cw~e of a
against R for the neutral disturbances ccm be expected
to have two cIistinct asymptotic branches that encIose a
region of instability in the al?-plane, regardless of the local
distribution of mean velocity ant{ mean temperature across
the boundaly layer. When the mean free-stream -i-eIocity
is supersonic (MO> 1j, the sit.uation is somewhat differe~~;
under certain conditions (soon to be defined) a neutral or

~ . j Camot~fiSLa self-excited subsonic disturbance c> 1—~

at any value of the Reynolck number. For this reason, it
is more convenient to study the case of subsonic and super-
sonic free-stream Yelocity separately.

.$.SLIBSOXIC FREFXTEEAM VELOCITY (Mc<l!

The asymptotic behavior at Iarge Reynolds numbers of

the cur=i-e of a against 1? for the neutral disturbances is

determined by the relations (19) to (22) betwee~ CP,R, and c
for real -ralues of c. For small }-aIues of m and c, these rela-
tioms are gi~-en approximately by

. . W,’C T:

––[%)].=. ‘“)“(c] ‘@i(z) = – T, (WG’)3 C@

‘lI=@r(z) (42!)

R= 7,1.76

–()
: ‘[w,’)’

a
(43)

& 1+ m, either z+ cu or z remains finite while both a ancl

c approach 0- These two possibilities correspond to two
asymptotic branches of the cur-re of CYagainst R.

Lower branch.—If z remains kite as R-+~, then c-O;
and by equation (41), @i(z)~O. Therefore, z~2.29 while
?L+2.29(6g.9). From equations (43) and (44), aIOng the
Iower branch of the cur-re of a tigainst. R for neutral stability

and cr~O at large ReynolcIs numbers (fig. 4 (1)).

(46)

Upper branch.—~oug the upper branch of the curve of a
against R for neutral stability, z+a and

whiIe ti~l.O (fig. 9 and equation (42)). If the quantity

(’l$ $, cloes not vanish for any due of w>O, then by

equation (47) c must approach zero as z-a. Mong this
branch,

(49)

and a~O at large Reynol.k n;,mbers (fig. 4 (1)).

()
On the other kind, if ~ ~ ccznishes for some -i-due of

w=c.>0, then by equation (47j c~c, and o-~a, m ~oth z and -- “-”
R approach cu. ATOW,

If [$ g)], does not vanish. (see appenclix D), then by
.

equations (44) and (47), along the upper branch of the curve
of a against R for the neutral clisturbances,

.-. .—.-

R=
(U’,’)g

27rzT10z4

Wkll}’+ ‘c:’~ ‘-’51’

r I
a—

‘u;: +1 –’1102(1–c~2
(52)

and cAc,# 0, a-a, #O at large Reynolds numbers (t@. 4 (k)

and 4 (1)).
E [$($)11

-iani.shes, the relation (51) is

replaced by

R ~2(w,’)’”gT,O,24
{[$i$)lx:” “2:’82)2 ’53’

which reduces to the relation obtained by Lin in the limiting
case of an incompressible fluid when Mo~O, the solid bound-
ary is insulated, and w“=0 for some value of w=cs>O.
(See equation (12.22) of reference 5, part III.)

()
If the quantity $ ~ vanishes a.? the solid boundary
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(that is, for w= O), it can be shown from the equations of

[42P)]
motion (appendix D) that ~~ T is always positive—

except in the limiting case of an incompressible fluid. For
d w’

small values of y, the quantities ––
[)ciy -T

and ‘~ are bokh

positi~e and increasing. For large values of y, however,
w’ {
—-+0, physically; therefore ‘— must have a maximum, or
T T
d W’

()fiT’
= O for some value of w>O, and this case is no

clifferent from the general case treated in the preceding
paragraph. In the Iimiting case of cm incompressible fluid,

,
when w” vanishes at the surface, w. lf=wll~~

-(:1’)2 ‘ince “’”
ahvays vanishes in this case. From equation (48) the rela-

tion between a ard R along the upper branch of the neutral
stability curve is therefore

R=2(W1’)19 1 1

7r’ (w,”)’ m
(54)

which is identic,a~with equation ( 12. 19) in reference 5, part HI.

()
Thus, regardless of the behavior of the quantity #y ~ –

regardless of the local distribution of mean veIocity ancl mean
temperature across the boundary layer—wlum .MO< 1, the
curve of a against R for the neutral disturbances has two
distinct branches at large Reynolds numbers. From physi-
caI considerations, all subsonic disturbances must be cla-rnped
when the wave length is sufficiently small (a large) or the
ReynoIcls number is sufficiently low. Consequently, the
two branches of the curve of a against R for the. neutraI dis-
turbances must join eventually, and the region between
them in the d-plane is a region of instability; that is, at a,
given value of the Reynolds .uumber, subsonic clisturbances
with wave lengths lying between two critical values AI End
12 (al and aJ are self-excited. Thus, when MO<I, any Zami-
nar boundary-layer $OW in a viscous conductive gas is znstalde
at sujlciently fvigh (but Jlnite) Rey?mkk numbers.

TII e lower branch of the curve of a against R for the
neutral disturbances is virtually unaffected by the distribu-

()
tion of $ $ across the bounckwy Iayer, but for the upper

d w’
branch the behavior of the quantity —

0dy T
is clecisive.

()
l}7hen $ ~ = O for some value of w.= c,>O, the neutral

subsonic disturbance passes continuously into the charac-
teristic inviscid disturbance c= c, ancl a= a. as R-+ co.
This result is in accordance with the results obtained in
reference 9 for the inviscicl compressible fluid and is in agree-
ment with Heisenberg’s criterion. In acklition, all subsonic.

disturbances of finite wave length k> A,=: (and nonvanish-

ing phase velocity O< C,<CJ are self-excited in the limiting
case of infinite Reynolcls number. On the other hand, when

d W’(-)%T
does not vanish for any vfilue of w> 0, then except for

. .
the “skgu]ar” neutral disturbance of zero phase velocity
ancl infinite wave length (c==O and a= O}, all disturbances
are clamped in the inviscicl comprcssibk fluid. T!kis
singular neutral clisturbanre can bc regarded as the limit i]lg
case of the neutral subsonic disturbance in a real compressi-
ble fluid as R-m.

B. SUPERSONIC FREE-STREAM VELOCITY (Afn> 1)

When the velocity of the free stremn is supersonic, the
subsonic boundary-layer disturbances must sa tkfy noL only
the diffe~.emtial equations and the boundary conditions of ~bc

problem but ako the physical rccluiremen~ that c,> 1–1}0’

The asymptotic behavior at kge Reynolds numbers of (1}~
curve of a against R for the neutral subsonic distu rbanrcs
is determined by the approximate e relations (41 j to (44), with

‘1 T
the additional restriction that c> 1–~o. & c~l –jl~O,

~+0 b3T equation (44); therefore, R-+ CDby cqtmtion (43).
The corr-esponding value (or vaIucs) of z is dckrmit~ cd by
equation (41 ) as follows:

()
O,(z) =v(c)=u 1–&

— ?’rWl’
——

Pk%)l.=c=% ’55’

d W-’

()
Now from physical considerations, ~~ -T <0 for large

Therefore if’- “values of y.
(’-)‘dy T

= O (clmngcs sign) for some

1~alue of w=c,> 1—1~, thenj in general,
1’0 [Hww=,-+:”

WIC1 @ i(Z) 1 <O (equation (55)). From figure 9 i~ can k
c=l–tie”

seen that in this case there is only one vrdue of 2 (zl, SRY)
correspond ing to the value of @~(.z)given lIY c3quation (55).
From equations (42) to (44) along the Zower branch of thc
curve of a against R for t$e neutral disturb tmcw}

f

‘“?3!1?:
WIr

7
cl= “-i&2”’OJ=Fa ’57)

.,
and c~l —lJro at k-ge Reynolds numbers (fig. 4(1<)). The

upper branch of the curve in this c.asc is given by equations

(51) and (52), or by equations (53) and (52) if
[$;@lL

vanishes, with c-c,> 1—1Llxoand a-%~#0.
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()If ~ @ vanishes for w=l—~~ then Z~CC as R4~
dy T o

along the upper brancb of the cur-re of a against R for the
WIf

DeutraI disturbances, ancl @i(z)-

/

—. Xow a+41 as
~2a;c3

C~I —~=1-in this case ako (equation (57) with ul = 1.0) so
II

thak

.Mong the loxer branch of the curve of a against R at Iar.ge
ReynoIds numbers, a, R, MIClc are connected by equations
(56) and (57), Itith 2,=2.29 and ti,=2.29. In spite of the

fact that. -$ ~$)=0 for w= 1–&O, a neutraI sonic clisturb-

( )
ante c= I —~ of finite wave length does not. exist. in

M

H 1
the inviscid fluid unIess K,(c)== ,3” &—AIz cZy is

positive. (See section 10 of. -reference 8.) CMeulation
shows that III(c) is almost always negative (equation (40));
therefore, in generaI, the sonic disturbance of intlnite wave
length (cK=O) mith constant phase across the boundary
Iayer e.tists onIy in the inviscid iluid (R+ m ).

()
If -$Y $ does not. vanish for any vaIue of W21 —&, it

is’er’’~th’’[$G)l.=c=I.&<o ‘d by ‘qu’tion ’55)

W)c=l.+l> 0. when ~lm1 <0.!xIO (approx. ), there are two

dues of z (% and z3, say, mith ~3>~2) COrreSpOndkg to the
value of @i(z) given by equation (55). (See fig. 9.) AIong
the two asymptotic branches of the cum-e of a against R for
the neutral clisturbances, a, R, and c are connected by rela-
tions of the form of equations (56) and (57), tith z and w
replaced by 22 and uZ, respectively, aIong the 10UW branch
and by z’ ancl u3, respecti~ely, cdong the zppw branch. At
~ given~alue of the Slach number, the value of u ~ is con-

Iz
trolIed by the thermal conditions at the solid surface. (See
section 6.) V%en these conditions are such that, u I =0.580,

1-Ye
then Za= 23, and the two &symptotic branches of the
cur-re of CYagainst R for the neutral disturbances coincide.
When t> I ~ 0.580 (approx.), it is impossible for a neuirdl–~—

or a self-e~cit ed subsonic disturbance to e-tit in the Iaminar
boundary Iayer of a viscous conducti~e gas at any due of
the ReynoIds nhmber. In other words, if u 1 >0.580

~–m—
(approx.), the kminar bounclary layer is stable at alI ~alues
of the ReLynoIds number. (Of course, in any gken case, the
critical conditions beyond which only damped subsonic dis-
turbances exist can be calctiated more accurately from the
relations (28) and (29). See section 5 on minimum critical
Reynolds number.)

The preceding conclusion can ako be deduced, at Ieast
quaIitati~eIy, from the resuks of a study of the energy

balance for a neutral subsonic disturbance iu the kninar
bouudar~ layer. .& neutraI subsonic disturbance can exist.
ordy w-hen the destabiIizing effect of ~-iscosity near the solid
surf~ce, the clamping effect of ~iscosity in the ffuid, and the
energy transfer bet-ween mean flow and disturbance in the
vicinity of the inner “eriticaI layer” aII balance out to give
a zero (average) net rate of change of the energg of the dis-
turbance. (See SMichting’s discussion for incompressible
fluid in reference 4.) In reference 8 it is shown that the sign
and magnitude of the phase shift in u*’ through the inner
“critical layer” at w= c is determined by the sign and maomi-

t.ude of the quantity
[%($)l.=:

The corresponding

—

*—~ m, ~hicb is zero for 10<Capparent shear stress Tc —
in the in-riscid compressible fluid, is given by the following
expression for W>C (reference 8):

[w)]
If the quanti~Y dy T .=. is negative, the meau flow ab-

[d”(w=.ispositive$
sorbs energy from the disturbance; if ~ ~

enerbq passes from t’he mean Bow to the disturbance. IB ._.
the real compressible fluid, the thickness of the inner critical
layer in which the -riscous forces are important is of the order

1
R lP, and the phase shift. in U*[ is actually brought. about

()
cY—

Vc

by the effects of viscous diffusion
(

dw
of the quantity p *

)

through this layer.
k shown by Prandtl (reference 12), the destabilizing ef-

fect of viscosity near the solid surface is to shif~ the phase of
the “frictional” component uf,*’ of the disturbance velocity
against the phase of the “frictionless” or ‘ ‘iuviscid>’ compo-
nent ‘Ui~@*’in a thin layer of ffuid of thickness of the order of

/

1
—R. By continuity, the associated normal component

\
ac—

n

shown in section 1 of reference 8 that for Iarge values of crR
the “frictional” components of the disturbance_ also satisfy

~uw , &*f
the continuity relation ~ ~ — = O in the compress-ay%

ible fluid.) The corresponding apparent shear stress

rl *=%*- is given by the expression

But from equations (11)

(61)
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mi

(62)

Since the shear stress associated wiih the destabilizing
eff ec L of viscosity near the solid surface tmcl the shear stress
near the criticaI layer act roughly throughout the same
region of the fluicl, the ratio of the rates of energy trans-

( J

h 7 .,.

ferred approximately ~
)

* by the two physical
o,

processes is

E,* T.* TW,’c T:

1 ––I[:G)I.=J”3’2~ =~ ‘j T, (WC’)3

VA ere

=;~v(c) [ 2?(2

,., _ R Gz3
G -%,, (W,’)*

(63)

.()If the quantity -$ ,% is negative and sutlciently large when

w=cI, say, then khe rate at which energy is absorbed by the
mean ff0T17 near the inner “critical layer” plus the rat e at
which the energy of tlw disturbance is dissipated by viscous
action more than counterbaknees the rate at. which energy
passes from the mean flow to the clisturbance because of the
destabilizing effect of viscosity Dear the solicl surface. Con-
sequently, a neutral subsonic disturbance with the phase
velocity c >cI does not exist; in fact, all subsonic clisturb-
ances for which c 2CI arc dumped. When MO< 1, there is

always a range of values of phase velocity O~ c<co for

which the ratio ~f~ : given by equation (63), is small enough

for ncut,raI (ancl ~elf-excited) subsonic disturbances to exist
for ReynoMs numbers greater than a certain critical value.
TVhen MO> 1, howe.tier, because of the physical requirement

that c> 1—~~>0, the possibilityy exists that for certain ther-
-.—,,

[w]
mal conditions at the solicl surface the quantity ~y T ~=o

EC*

is always sufficiently large negatively (ancl therefore. — isEl*

sufficiently large) so that onIy cIamped subsonic disturbances
of course if ~ ~ ~Tal*ishes

exist a~ all Reynolds numbers.
()‘dy T.

for some vaIue of w> I –&, it is certain that v(c) <0.5s0

for some range of values of the plmse velocity 1—&s cs ?;.

In that case, neutral ancl seIf-excited subsonic disturbtinees
always exist for R> R6,n1~and the flow is ahvays unstable “at

sufficiently high Reynolds numbers, in accordance with
Heisenberg’s criterion as extended to the compressible fluid
(section 2),

~ discussion of the significance of these results is reserved
for a later sectio~ (section 6) in which the behavior of Lhe

‘-” d W’

()quaniit~ @ T
will bc rektecl directly to the thermal

conditions at the solid surface and
number.

5. CRITERION FOR THE hlIN1fillJll
NUhlBER

The object of tht stability analysis is not only to dctur-
mine the general conditions undw- which the Iaminar bound-
ary kyer is unstable at sufficiently high Reynolds numbers
but also, if possible, to obtain some simple criterion for (Ile
limi~ of stabi]ity of the flow (minimum critimI RPynolcls
number) in terms of the Iocal distribution of nmm -relocily
and mean temperature across the boundary layer. For plane
~ouette motion (linear velocity profile) and plane l?oiseuille
motion (parabolic velocity profile) in an incomprcssibk fluid,
Syngc (reference 13) was able to prove riggrol.@y tht a
minimum critical ReynoIck number actually mists ‘DCIUW
which tht flow is stabk. His proof applies also 10 the
laminar boundary layer in an incompressible fluicl, with only
a slight modification (reference 5, part ?31). Such a proof is
more difficult to give for the laminar boundary layer in a
viscous conductive gas; however, the existence, in geucral,
of a minimum critical ReynoMs number can ‘m inferred
from purely physical consiclerations. A study of t-k Cnmgy
balance for small clisturban~ccs in the larninar bmmdary lfiycr
shows that the ratio of the rate of viscous dissipation 10 the
rate of energy transfer near the critical layer is l/R for a
clisturbance of given wave length whiIe tl.w ene~.gy transfer
associated with the destabilizing action of viscosity near the

solicl surface bears the ratio 1/@ to tlw cnerg~ transfer near

the. critical layer. Thus, the cff eck of viscous dissipa Lion

w-ill predominate at sutllciently low Reynolds numbers find
all subsonic disturbances will be dampccl. The t}vo distinct
asymptotic branches of the curve of a against A’ for the
neutral disturbances at. large Reynolds numbers must join
eventually (section 4) and the flow is staMc for all Reynolds
numbers less than a certain criticaI ~aluc.

An estimate of tbe vaIue of RC,~f~, which will servo as a

stabiIity criterion, is obtained by taking the phase velocity c
to have the maximum possible valm cOfor a neutral suko nic
disturbance; that is, for C>CO all subsonic disturbances arc
damped. This condition is very nearly equivalent to tl.Mcon-
dition that UR be a minimum, which was employed by liJ) for
the case of the incompressible fluid (p. 2s5 of refwcnm 5,
part HI). The condition C=COoccurs wheu (1~(~) is a maxi-
mum; thzt is, when @~(z) =0.580, zO=3.22j ancl (E,(zo)=1.48
(fig. 9). The corresponding vaIue of C=COcan bc rakulatccl
from the relations (19) to (22). A’eglecting terms in A’
(h is usually very small) ancl taking u=l.50 givw

0,(2) = [1–2A(C)]O(C) (64)
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and
‘W’(?JC-U) _ ~x(c)= ~ (66)

It. is only necessary to plot the qwmtity (1 —2k) 0 against. c
for a given Iaminar bour&r-y-Iayer flow and find the value
of C=COfor which (1 —2x) v= 0.5S0. The corresponding value
of cJi’ k determined from the relation

and this w.lue of aR is very close to the minimum value of
al? . .4 rough estimate of the value of a for C=COis given by
the following relation (equation (27)):

This estimated -ralue of a is, in generaI, too small. The fol-
lowing estimate of Rc,~ti is obtained by making an approxi-

mate aHowance for this discrepancy and by taking round
numbers:

(69)

For zero pressure gradient, the slope of the veIocity pro61e
&J-

()a~ the surface —dq ~is given very closely by (appemlk B)

tmd

Therefore

(71)

‘l’he expression (71) is useful as a rough criterion for the
dependence of R$C,~imon the local distribution of mean

-relocity and mean temperature across the boundary layer.

It is immediately e-ride~t. that RSC,qiX-+~ when cO+l –&O.

When [(1 –2A) t?] I k 0.5S0, the laminar boundary layer isC.l–=e —

stable at ail mlues of the Reynolds number. (This condition

is an impro-rement. on the stability condition ol_A~ 0.580
Me

(approx.) stated in section 4.)
In the following tables and in figures 5 and 6 (a) the esti-

mated -ralues of ROC,ma~ti-ren by equation (71) can be com-

pared with the vaIues of R@C,=&taken from the calculated

curves of a$ against R@ for the neutral disturbances. For

the insulated skface, the -raJues are

t
c,

o.4M
.4QI
A&Cc
.48s3
.5139
-5450

1!?5
Lm
m
129
m
$=2 1--

R@
.,-i.

(fig. 4)

lEO
136
lxi
11.5
MM
w

For the noninsulat ed surface when MO= 0.70, the values are —

<H
R8 Rt

TI T(G) == i= Cr” ;.

Q
(es.] (fig. 4)

o.n 0. 1S72 0.ii12 5377 .51.50 .
.S) 1%3 1$40
.93

~$j \ :~g 524 m
L 25 L 1449 39 63

The expression (71) for RRm~in gi~-es the correct order of

magnitude and the pro-per -rariation of the stability limit
with Mach number and with surface temperature at a giwm
l~ach number.

The form of the criterion for the minimum critical Rey-
nolds number (equation (71 )) and the results of the detailed
stability calculations for se~eraI representati~e cases (@. 3
and 4) show that the distribution of the product of the

density and the -rorticity p $ across the boundary layer

Iargely determines the limits of stability of laminar boundary-
layer flow. The fact that the “proper” Rqmolds number
that. appears in the boundary-layer stability calculations is
based on the kinematic viscosity St the inner criticaI layer
(where the -iiscous forces are important) rather than in the
free stream also enters the problem, but it amounts only to
a numericaI and not a qmlitati~-e change when the w_mI
Re~oIds number based on free-stream kinematie viscosi~y
is finally computed. Ti%ether the mdue of ReC,~,Z for a

given Iaminar bound~-layer flow is larger or smaller than
the rahe of R80~iz for the B1asius Ho-w, for exampIe, is ‘

determined entireIy by the distribution of p ~ across the

()
boundary layer. If the quantity $ p ~ is-~egative and

large near the solid surface so tha~ the quantity (1 –2?Jv(c)
reaches the ~aIue 0.5S0 when the ~ahle of c= co is less than
0.4186, the flow is relatively more stable than the Blasius
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()flow. If the quantity -$ P ~ is positive near the solid

surface, so that, (1 —2k)o(c) =0.580 when w (or c)> O.4186,
the flow is relatively less stable than the Blasius flow. Thusj
the question of the relative influence on R9G.~i~of the kine-

mat ic viscosity EL the inner criticaI layer and the distribution
dw

of p — moss the bounclary layer, which remained open in
dy

the concluding discussions of reference 8, is now settle-d.

The physical basis for the predominant infiuence on

R8,,~i~ of the distribution of p ~ across the boundary layer

is to be found in a study of the energy balance for a subsonic
h~nclary-layer disturbance (section 4). The distribution of

p ~ determines the maximum possible vaIue of the phase
●

velocity co or the maximum possible distance of the inner
critical layer from the solicI surface for x neutral subsonic
disturbance. The greater the distance of the inner critical
layer from the solid surface, the greater (relatively) the rate
of energy absorbed by the mean flow from the disturbance
in the vicinity of the criticaI layer (equations (61) and (62)).
I}%en co is large, therefore} the energy baIanc.e for a neutral
subsonic disturbance is achieved only when the destabilizing
action of viscosity near the solid surface is relatively large or,

in other words, wheu ~ s c03/2is large ancl the Reynolds

/\ao:

number Ro, which is very nearly equal to RC,~~fi,is correspondi-

ngly small. On the other hand, when co is srnalI and the
inn er critical layer is close to the solid surface, the rate at
which energy is a?morbecl from the disturbance near the
critical layer is relat iveIy small and the rate at which energy
passes Lo the disturbance near the solid surface, which is of

the order of
1

-===~ is also relatively small for energy bal-

4

R
a—

Vc
ante; consequently RC,~iz is Iarge.

6. PHYSICAL SIGNIFICANCE OF RESULTS OF STABHJTY
ANALYSIS

A. GEh-EIl.4L

From the resdts obtained in the present paper and in
reference 8, it is clear that the stability of the laminar bound-
ary layer in a compressible fluid is governed by the action of
both \-iscous and inertia forces. Just, as in the. case of an
incompressible fluid, the stability problem cannot be under-
sioocl urdess the viscosity of the fluid is taken into account.
Thus, wheth,er or not a laminar boundary -Itiyer flow is un-
stable in the inviscid compressible fhicl (R-+ cc), that is,
whether or not the product. of the density and the vorticity

dw
p~

has an extremum for some value of w> 1–&, there is

alN7a37ssome value of the Reynolcls iurnher RC,~i~ below

which the effect of viscous dissipation predominates and the
flomT is stable. On the other hand, at very large Reynolds
numbers the influence of viscosity is- dest.ablizing. If the

free-stre5m velocity is subsonic, any laminar boun{la~y-h]ycr

flow is unstable at sufficiently high (but. finite) R(~ynol(ls

numbersl whether or not the flow is stabIe in the invisci(]

fluid when only the inertia forces arc ccmsidere{I,

The action of the in~rtia force.s is more clccisive for the
s.tabiIit.y of the laminar boundary layer if the free-stream
velocity is supersonic.. Because of th~ physicciI rcquircrnrnt
that the relative phase velocity (1 —c) of the boundary -]ciycr

disturbances mus~ be subsonic, i~ follows that c> 1–X$->tl
.

[J G%ol.=c “
and the quantity ~ii can be large enough nega-

tively under certain conditions so that the stabilizing action
of the inertia forces near the inner critical kyer (where
w=c>O) is not overcome by the (Icstabiliziug fiction of
viscosity near the solid surface. III that, case, un{ltimpwl
disturbances cannot exist in the fluirl, w-d the flow is sfablc
at all values of the. Reynolds number.

Regardless of the free-stream velocity, the clistribution of

the p~oduct of the density ancl the vorticity p @ arross th~
dy

boundary layer determines the actuaI limit of stability, or the

minimum critical Reynolds number, for laminar k wldarLy-
Iayer flow in a viscous concluctiv? gas (ccluat ion (71]).

Since the distribution of p ~ across the boundmy kycr in

turn is determined by the free-stream Mach mlrnbcr and
tk therm.aI conditions at the solid surface, the eflcwt of tlicsc
physical parameters on the stability of lanlinar boundmy -
Iayer flow is readily evaluated.

B. EFFECT OF FREE-STREAkf AIACH KLIMBER AND THE RKI.AL C:OXDITIC)NS

AT SOLID SURFACE ON STABILITY OF LAMWAR BOUNIJ.4RY LAYER

The clistribution of mean velocity zmcl mean temperature

(

dw

)
and therefore of P— across the laminar Ixmncltiry layer in

Cly

a viscous conductive gas is strongly influenced by the facL

that the- viscosity of a gas increases with the kmpcraturc.
(For mosL gases, pa T’n (m=O.76 for air) over a fairly wide
temperature range.) lVhen brat. is transferred to [hc fluid

through the solid surface, doe temperature and viscosity

near the surface both decrease along the out~rard normfil, and

the fluid near the surface is more retarded by the viscuus

shear than the. fiuicl farther out from the surface-as com-

pared with the isothermal Blasius flow. The veloci~y profik
therefore always possesses a point of infk tion (w’here w”= 0)
when heat is adcled to the fluicl through the solid surfaeej
providecl there is no pressure gradient in ~he clircction of the

-d -() ‘f w’T’
main flow. Since ~ p* =WT –-T, , [he c~uantity

dw

()

dw
~ P*dy

vanishes and P— has an ext.remum aLsome point
dy

in the ffuid. On the other hand, if heat is withdrawn from
bT

the fluicl through the solic{ surfrwe, --- and a~ arc both posi-
ag ?ly

tive near the surface. ancl the fiuid near the surface k less
retarded thtin tho fluid farther out-—-as compmed with the
Blasius flow. The velocity profik is therefore more conwc
near the surface than the Blasius profiIe.
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.1s pointed out in section 11 of reference S, the Muence. of

the variable ~tiscosity on the behavior of the procIuct. of the

density and the, rorticity p $V can be seen directly from the

equations of motion for the mean flow. Then there is no
pressure gradient in the direction of the main How, the fluid
acceleration wmishes at the solid surface, or

and

(“72)

Thus, when heat is added to the fluid throwh the solid sur--.—

)face (T,’<()), (~z, * k positive, and the -reIocity profiIe is

concave near the surface and possesses a point of inflection
for some value of w>O; when heat is -withdrawn from the

fluid ( ~1’>o), (a~$~)lis Dwtive, and the velocity profile

is more con~ex near the surface than the BIasius profiIe.

The behavior of the quantity ~ey’
(+%)=&(p*@

$2~*
is paraIIeI to that of —~y*2’ From equation (73), in nondi-

mensional form,

Differential ing the dcynarnic equations once and making use
of the energy equation gives the folio-iving expression for

[%011 -- : --
(appendix Dj

[$(%)11=

, (T,’)’(wl’)3+2(m+l)%u,~a(m+l)(yl).u/ ~
(75)

Thus, for zero pressure gradient,
[$(311

is always positi~e;

w)]
N“o-iv, if the surface is insuIated, the quantity ~y ~ ,

‘mishes>but [$2($)12° a“dw) and? both ‘-

crease with distance from the solid surface. Since $ ~0

()
far from the soIicl surface, $ has a maximum and -$ ~

vznishes for some value of w>O. If heat. is added to the
~ f’~>’

)
fluid through the soLid surface (T,’< 0), ~(~, is a~ead~

positive at the surface; and since
[$($)11

>0, the quan-

(.)tity -$ $ vanishes at a point, in the %uicl mhich is farther

from the surface than for an insulated boundary at the same
Mach number (figs. 3 (a) and 3 (b)). ~onsequenti-y, the vaIue
of c = COfor which the function

T, [F%%)]...
(1–2X)D(C) =–F(l–2L) ~

reaches the value 0.5S0 iskrgerthan the -mluefor the insu~ated
surface. By equation (71), the effect of adcling heat to the
fluid through the solid surface is to reduce R~a ~ md to

destabilize the flow, as compared with the flow o;er an in-
sulated surface at the same Mach number (fig. 6).

If heat. is -withdrawn from the fluid through the solid sur: _.

[&G)llisn@i~e ‘fa’tif ‘he ‘ate
face, T,’>0 and —

of heat tramsfer is suEEciently large$ the quantity

& ~T’) does not vanish within the boundary Iayer (fig. 3 (b)).

The vaIue of C=CO for mhich the function (1–2x)?(c)
reaches the value 0.580 is smaller than for an inwdatecl
surface at the same JIach number; and by equation (71),
the effect of ~~ithd~atig beat from the fluid
through the solid surfcwe is to increase .RR and to stab-

Crmti
ilize the flow, as compared with the flow over an insulated
surface at the same llach number (fig. 6). IT&m the ~eloe-
ity of the free stream at. the “ edge” of the boundary la-ye-r
is supersonic, the Iamiaar boundar-y layer is completely
staMIized if the rate at which heat is withdrawn tbou@
the solid surface reaches or exceeds a critical value that
depends only on the Alach number, the Reynolds number,
and the properties of the gas. The criticaI rate of heat

d W’

()
transfer is that for which the quantity ~ ~ k. sti-

ciently large negati~el~ near t!ue surface (see equation (74))

so that (1 —2k)r(c) =0380 m-hen c=cO=l —~O(sections 4

and 5). -Although det aiIecI stabikty calcuIationy for ~per-
sonic flow o-rer a noninsuIated surface ha-re not been carried
out, the function (1 —2x) c(c) has been computecI for non-
insuIated surfaces at JIO= 1.30, 1.,50, 2.00, 3.00, and 5.00 by
a rapid appro.~ate method (appe~clk (2). The corresponcl-
ing estimated values of R&a=,=were calculated. from equa-

tion (71), ancl in figure 7 these values are plotted against 1“1,

the rat io of surface temperat m-e (deg abs. ) t o free-stream tem-

perature (deg abs.). A.t any gi-ren Llach number gTeater .

than uni~y, the ~aIue of R@~~i~increases rapicU-yas CO-I —~;
al,

when COcliffers only slightly from I —~ ~ the stability of
.11,

the ]aminar bounda~ is extremely sem~itive to thermal
conditions at the solid surface. At each walue of .TIO>1,
there is a criticaI -mJue of the temperature ratio ~,= for which

R$ -+~ . If T,S TIC,, the laminar boundary layer is
Crmin

stable at all R e-ynoIds rmmbers. The difference between the
stagnation-t emperat ure rat io and the critical-surface-
temperature ratio, which is reIatecl to the heat-transfer
coefficient, is plotted ~~ainst Mach number in figure S.
~TncIer free-flight. conditions, for Slach numbers greater
than some criticaI Mach number tlmt depencls largely on
the aItitucle, the vaIue of 7’.– T,= is within the order of
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ma@tu~e of t]le ~iflerence” hetl!~een stagnation temperature

and surface &mperature that actually exists because of heat

mcliation from the surface (references 14-and 15). In other
words, the critical rate of heat withclrawcd from the fluid

for laminar stability is within tlw order of magnitude of the

calculated rat e of heat comluction through the solid surface

which balances the heat radiated from the surface under

eq nilibrium conclitions. The calculations in appendix E
show that this critical Mach number is approximately 3 at

50,000 feet altitude and approximately 2 at 100,000 feet

a~titude. Thus, for Mfl >3 (approx.) at 50,00Ci feet altitude
and MO>2 (approx.) at 100,000 feet altitude, the larniuar
boundary-layer flow for thermal equilibrium is completely
stable in the absence of an adverse pressure gradient in the
free stream.

VVhen there is actuaIly no heat conduction through
the soIid surface, the limit of stability of the laminar
boundary layer depends only on the free-stream Mach
number, that is, on the extent of the “aerodynamic heating”

( ( ))-’7322of the order of V1- ~ near the solid surface, A good
Y

indication of the influence of the. free-stream Mach number

dw
on the distribution of p ~ across the boundary layer for cm

Y
insulated surface. is obtained from a rough estimate of the

()
location of the point at which $ P * reaches a positive

‘Daxi’’’un’ (or $(’%) “’fishes) ‘ifferen’iating ‘he
dynamic equations of mean motion twice and making use of
the energy and continuity equations yields the following
result for an immlat ecl surface:

[$+311=-: w

/-”---
0

where b=3 — I?rorn equations (75) and (76’> QZ*”

(76)

“the value

of c at whit; ~ “
()

~,anishes or g w’
dyz T > ()dy 7

reaches a maxi-

mum, is given roughly for air by

in which wl’ = 6(0’~20) (appendix B). In other words, the

d W’

()
point in the fluicI at which — —dy 1’ attains a maximum moves

farther out from the surface as t,he Mach n.urnber is in-
creased—at least in tho rarige OS MO <4.5 (approx.); t,here-

d w’
fore the value of c for which —

()dy ~ vanishes and the value

of C=co for which (1 —21) o(c) reticks the value 0.580 both

increase with the Mach number (fig. 3 (a)). By equation
(71), the value of R8,,~iz for the lmnimw boundctry-lqwr flow

over an insulated surface decreases as the Nlach number
increases ancl the flow is destabilized ~as comparwl with [k
Blasius flow (fig. 5).

C. RESULTS OF DETAILED STABILITY C.4LCULATIONS FOR INS ULATCH ASD
NONINSULATEDSURFACES

From the results of the detailed stability cakukttions for
several representative cases (figs. 4-to 6), a quantitative esti-
mate cali be made of the effect of free-stream Marl] ILumber
and therrncd conditions at, the solid surface on the stability of
Iaminar boundary-layer ffOW. For the insulated surface, the
value of R~,,~t~ k 92 when MO= 1.30 as cornparrtl with a valuo

of 150 for the Bksius flow. For the noninsulatwl surface a~
MO= 0.70, the: vahle of RoC, ~~ is 63 117hcn T1 = 1.25 (heat

addccl to fluidj, RoC,~i~=126~when Tl= 1.10 (ksu]vtcci sur-

face), and Rec,mia= 5150 when T1=O.70 (lumt witldrawn

/

_

from flui~). Since Rs *= 2.2511~2(the value of 0
1

_eJwhich
v~*x*

is proportional to the skin-friction co@iicicnt.J differs only
slightly from the Blasius vaIue of 0.6667), tLte cfl’rut of the
tkermaI conclit ions at, the solid surface on D.=”is cvcct more
pronoune,e.cl. The value of R.* is 60X 10fiwhen Tl= 0.70 and
MO= O.70, _ as compared with a vaIue of 5I X 10s for (ho
Blasius fl-o~~’lT, = 1 and MO= O). For the insulaf.(.vl sllrfarc
the value of R=”C, cleclines from the Bl~sius value for

~ in

MO=O to “a value of 19x103 at MO=l.30. The cxtrcunc
sensitivity of the limit of stability of f-he laminar boundary
layer to +Lermal conditions at the solic{ surfacw when T,< 1
is accoum!ed for by the fact thtit COis snmll WIND TI <1 and
~?lo< 1 (or MO is not much great m than unity) ctnd

.?m,n ‘-”R8 =7 (equation (71)). Small rhanges in c,, lhcrcfcwe,

procluce large changes in lloC,~i,. In addition, wheu T1<l,

small changes in the thermal renditions cit the solid surf arc

~J ~~~ (equation (74)) ancl,produce appreciable changes in –-

therefore, in the value of co.
Not only is the value of R~C,~I~fiffcctcd by the thlllfd

conditions zt th: solid surface and by the free-stream hlach
number but. the entire curve of a~ against Re for the uetitial
dis~urbances is also affect d. (See figs 4 (k) and 4 (1~.)
~%en the surface is insulated (and ~fo# 0), or heat is”addccI
to the fluid (l’l= 1.25), a~~cr,# O as Re-+ ~ along the upfwr
branch of the curye of neut raI stability. In other words,
there is a finite range of unstable WQVClengths even in LLO
limiting case of an infinite Reynolcls number (inviscid fluid).
However, a-+0 as Rg~ Q for the Blasius flow, or when heat
is withcfrawm from the fluid. This behavior is in comple k
agreement with the resu~ts obtained in section 4 and in.
reference_ 8.
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.% comparison between the curves of a~ against Re for
Tl= 1.25 ancl T,=O.70 at J10=0.70 shows that withdrawing
beak from the fluid not ordy stabilizes the flow by increasing
R, ,r~{n but cdso greatly reduces the range of wtable wa~re

numbers (a~). On the other hand, the addition of heat. to

the fluid through the soIid surface greatly increases the range

of unstable wa-re numbers.
It shoulc[ also be noted that for gjren values of ca, c,

aml Rg the time frequencies of the bounclary-layer clisturb-
arwes in the high-speed flow of a gas are considerably greater
than the frequencies of the fcmiliar Tollmien wa~-es obser~ed
in low-speed flow. The actual time frequency n* expressed
nondimensionally is as foJ.Iows:

—
ii.*vO* _ cffc9

(’~jz – 2zR6

For gi~en ~alues of c, a~, and RB the frequency ticreases M
the square of the free-stream ~elocity. -

~. lNST.4BILJTYOFLhMx.4REG~&l?~R~L.4~ER.%ADTR~::SITIOk-TO
TCTr.B~LENTFLOL~

The wdue of R~,,n,B obtained from the st~biIity amd-jsis

for a given kuninar boundary-la-j-er flow is the value of the

Reynolds number at which self-excited disturbances fh-st
appear in the boundary layer. ..% Prcmdtl (reference H)

carefuIIy pointed out, these initicd ckturbamws are not
turbulence, in any sense, but s~owIy growhg osctiations.
The value of the ReynoIck number at which houndcmy-
Iayer disturbances propagated along the surface -wiL1be
simplified to a sfieient extent to cause turhdence must be
Ia.rger tkm R$C,r,ti in any case; for the insukted flat-p~ate

flow at Iow speeds and with no pressure graclient, the tran-
sition RecynoIds mlmber RS(, is found to be three to seven

times M large as the ~alue of Rea~tm (references 6 ancl 7).

The vaIue of Rti,f depends not onIy on RBWWizbut also on

the initicd magnitude of the disturbances with the most

“ dangerous” frequencies (those with greatest. amplification),

OD the rate of amplification of these disturbances, aDd on the

physical process (as yet unknown) by which the quasi-

stationary laminar flow is finaIly destroyed by the ampMed

osci.llat iom (See, for example, references 16 and 17.) The

results of the stability anaIysk nevertheless permit certa~
ge~eraI statements to be made concerning the effect. of
free-stream Mach number and thermal conditions at the
solid surface on tramition. The basis for these statements is
summarized as follows:

L1I Ln mariy prob~ems of techoical interest. in aeronautics
the Ie\-el of free-stream turbulence (magnitude of initial
disturbances) is sufficierdIy Iow so that the origin of transitio~
is always to be found in the imtcibility of the Iaminar bound-
ary Iayer. In other words, the ~alue of Rffcr~tfiis an absolute

lower limit for transition.
V2”IThe effect of the free-stream Mach number and the

thermaI conditions at the solid surface on the stability limit

(lhc, ,) is o-rerwheIming. For exampIe, for 31,=0.70, the

vaIu~%f RtC,~ti whe~ Tl= 0.70 (heat w-ithdrawn from fluid)

is more than SO times as ~geat as the value of ReG%iXwhen

T,= 1.25 (heat adc]ed to fluid).
(3) The maximum rate of amplification of the self-excited

bounclary-layer clisturbances propagated along the s@acs _____

~aries roughly as 1/%~Re..~,%. (This. approximation agrees

cIoseIy with the numerical resuIts obtained by Pretsch
(reference 18) for the case of an incompressible fluid.) The
effect of withdrawing heat from the fluid, for exarnpIe, is
not ordy to increase RgC,~~~and stabilize the ffo-ir in that

manner but SJSOto decrease the initial rate of amplification

of the unst abIe disturbances. b other words, for a given

level of free-stream turbulence, the inter~al between the

fist appearance of self-excited cksturba.nces ancl the onset of

\ransition is expected to be much Ionger for a relatively

stabIe fiow, for which ReG,~iXis Iarge, than for a relatively

unstabIe floit~, for which R~.,~ti is small and the initial rate

of amplification is large.
On the basis of these obserl-ations, transition is delayed

(Rfl, ~creased) by withdraw~a h~~t from the Huicl throu~~_”~_-

thesoIicIsllrfxce anti is ad~-anced by adding heat !O the fluid.

tlwough the soIid surface, as compared with the insulated
surface at the same liachnumber. For the insulated surfuce,

transition occurs cm-Iier as the llach number is increased, as
co~,p.x~.i with the fiat-plate flow at wry Iow llach numbers.
“~t-hen the free-stretim velocity at the c*dge of the boundary
layer is supersonic, trmsitiou never occurs if the rate of heat
tithdramal from the fluid tIwough tk.solid surface reaches
or exceeds a criti~:xl ~alu? that depends onl~ on the llach
number (section 6B ancl figs. 7 and S). ..=.——

A comparison between the results of the present cmal@s
ancl measurements of transition is possible only when the
free-stream pressure gradient is zero or is Md fi..ed while th~ -
free-stream Mach number or the thermal conditions at the
solid suface are -rariecl. Liepmann and Fila (reference 19)

ha-ye measured the mo~ement of the transition point on a

flab plate at a very low free-stream ~e~ocity when heat i.s

applied to the surffice. They found bY means of the hot-wire

anemometer that R..,, declined from 5X 105for the insuIated

surface to a due of approximately 2X105 for T~= 1.36 when

./(~2
the levd of free-stream tmhdence /—

1 (~’
was 0.17 percent,

/0
,u*r 2

or to a ~alue of 3 XIOS ~hen w~ (UO*)Z=005 Percent and

T,= 1.10. The value of Re,, clecl.ines from 470 (approx.) to
300 (approx.) in the firsb case and to 365 in the second.

Frick ant{ Mdldlough (reference 20) observed the varia-
tion in the transition ReynolcLs number when hea~ is applied
to the. upper surface of an NT.l~.< 65, %-016 airfoil at the nose
section cdone, at the section just aheacl of the minimum pres-
sure station, and for the entire laminar run. T&n heat is
appIiecI only to the nose section, the trcmsit iort Reynolds
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number (determined by total-pressure-tube measurements)
was prfietically unchanged. Near the nose, h?8<R~C,~,~

and the strong favorable pressure gradient in the region of

the stagnation point stabilizes the laminar boundary layer

to suck an extent that the addition of heat to the fluid has

only a negligible effect. When heat is applied, however, to
the section just ahead of the minimum pressure point, where
the pressure gradients are moderate, the transition Reynolds
numbter Ret, declined to a -ralue of 1190 for TI = 1.14, com-

parecl with a value of 1600 for the insulatcd surface. When

heat, is applied to the entire laminar run, Rot, declined to a
value of 1070 for TI =1.14.

It }vould be interesting to investigate experimentally the
stabilizing effect of a withdrawal of bea~ from the fluid at
supersonic velocities. M. any rate, on the basis of the
results obtained in the experimental investigations of the
effect of heating on transition at low speeds, the results of
the stability amdysis give the proper direction of this effect.

7. STABILITY OF LAMINAR BOUNDARY-LAYER FLOW OF
A GAS WITH A PRESSURE GRADIENT IN THE DIRECTION
OF THE FREE STREAM

For the case of an incompressible fluid, Pretsch (reference 9)
has shown that even with a pressure gradient in the
direction of the free stream, the local mean-velocity distri-
bution across the boundary layer completely determines the
stability characteristics of the local Iaminm boundary-layer
flow at large Reynolds numbers. From physical considera-
tions this statement should apply also to the compressible
fluid, provic]ed only the stability of the flow in the boundary
layer is considered and not the possible interaction of the
boundary layer ancl the main “external” flow. Further
study is required to settle. this question.

If only the locaI mean velocity-temperature clistribution
across the boundary layer is found to be significant for
laminar stability in a compressible fluid, the criterions ob-

tained in the present paper and in reference. 8 are. then im-
mediately applicable to lamimw boundary-kyer gas flows in
which there is a free-stream pressure gradient. The quanti-
tative effect of a pressure gradient on laminar stability couId
be readily determined by means of the approximate estimate

of Rocr~{z (equation (7o)) in terms of the distribution of

the quantity p‘~ across the bounclary layer. Such calcula-

tions (unpublishecl} have already been carried out by.
Dr. (2. C. Lin of Brown lTniversity for the incompressible fluid
by means of the approximate estimate of RJ.C,n,~ given in

reference 5, part HI.
ln any event, the clualitative effect of a free-stream pres-

dw
sure. graclient on the. local distribution of ~— across thedy
boundary layer is evidentIy the same in a compressible fluid
as in an incompressible fluid. lf the effect of the local
pressure graclient alone is considerecl, the velocity distribu-
tion across the boundary layer is “fuller” or more convex for
aced erated than for uniform flow ancl} con~ersely, less

convex for decelerated flow. Thus, frori the rcsulw of ~hc
present paper the effect of a negztive pressure grad icnt. on
the laminar boundary-layer flow of gas is stabilizing, so far
as the local mean velocity-t. emperaturc distribution is con-
cerned, while a positive pressure gradien ~ is des tahil izing.
For the” incompressible fluid, this fact. is ~vcll-cstal)lisl~t~{lby
the Rayleigh-ToIImien criterion (reference 3), tl~e work of
Heisenberg (reference 1) and Lin (reference 5), and a mass of
detailed calculations of stability limits from the curves of a
against R for the neutral disturbances. These calcuh~tious
were recently carriecl out by several German investigators
for a comprehensive series of pressure gradient, profllcs.
(See, for example, references 9 and 21.)

Some’idea of the reIative influence 011]aminar sta]jili(y of
the thermal conditions at the solid surface and the free-stream

pressure gradient is obfiained from the ec~uations of mean

motion. At the surface,

or

In ti region of small or moderate pressure gradients

tknal conditions at the solicl surf are. For e.x[inlple, tlj[]
chordwise position of the point of instability of the huninar
bounclary layer on an airfoil with a ffat. pre.ssurc rlistribut ion
is expert.ed to be strongly influenced by heat conduc~ion
through the surface. (See reference 20.) For the insulat,ud
surface, the equations of mean motion yield the foIloIrillg
relation (appendix D), which does not involve the pressure
gradient explici tIy:

The effect of “aerodynamic heating” at the SUI’f:WCO1)JNW.S
the effect of a favorable pressure gradient so far as [he ciis-

tribution ‘of p ‘—w across the boundary layer is conmmcd
dy

(equations (79) and (80)). The relative quantitative il~flu-
ence of these two effects on lamimm stabiIity can only be
settlecI by act uaI calculations of the Iamina r boundtiry-ktycr
flow in a compressible fluid with a free-stream pressure
gradient.. .4 methocl for the calculation of such flows o~er
an insulated surface is given in reference 22.

RThen the local free-stream veIocity at the edge of the.
boundary layer is supersonic, a, negative prcssum gradient
can have a clecisive effect on ktminar stability. The Iocnl
laminar boundary-layer flow over an insu]at ed surfacrj for
example, is expected to be completely sttible wh[:n the! mag-
nitude of the local negative pressure gradient .macl~es or
exceeds a critical value that depends only on the local 3iach
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number and the properties of the gas. The critical. magni-

tude of the pressure gradient is that which makes the-quantity
cl dw

()@ Pzy
sufEeiently large negatively near the surface so that

1
‘henc= 1–mn”

It has already been shown in th; present paper than w-hen

M0>3 (approx.) the laminar boundary-layer flow with a

uniform free-stream -re]ocity is completely stable under free-

flight conditions when the solid surface is in thermal equi-

librium, th~t is, when the heat conducted from the fluid to

the surface balances the heat radiated from the surface (sec-

tion 6B). The laminar boundary-layer flow for thermal

equi~brium should be completely stable for MO>J1,, say,

where M$<3 if there is a negat i~e pressure gradient in the

direction of the free stream. Favorable pressure gradients

exist. over the forward part of sharp-nosed airfoils arid bodies

of revolution moving at supersonic velocities, and the limits
) of the Iaminar bowndary layer shouldof stability (R@C,~{m,

be calculated in such cases.

CONCLUSIONS

From a stud-y of the stability of the Iaminar boundary
layer in a compressible fluid, the following conclusions were
reached:

1. k the compressible fluid as in the incompressible fluid,
the influence of viscosity on the kminar boundary-~ayer flow
of a gas is destabilizing at. very large Reynolds numbers.
If the free-stream velocity is subsonic, any laminar boundary-
layer flow of gas is met able at sufTicientIy high Reynolds
numbers.

2. Regardless of the free-stream Mach number, if the
procluct. of the mean density and the mean vorticit.y has an

“trem”nw’%)“ )vamshes for some value of w>l —*0

(~vhere w is’ &’ra& of mean” velocity component para~el

to the surface to the free-stream veIocity, and where MO is

the free-stream ilach number) the flow is unstable at sufEi-
eiently high ReynoIds numbers.

3. The actual Iimit of stability of laminar boundary-layer
flow-, or the minimum critical Reynolds number Re,,=im, is

determined largely by the distribution of the product of the
mean density and the mean vorticity across the boundary
layer. .&n approximate estimate of Re,,~,~ is obtained that

serws as a criterion for the influence of free-stream Mach
number and thermaI conditions at the sofid surface on
Iaminar stability. For zero pressure gradient, this estimate
reads as foIIows:

where T is the ratio of temperature at a point within the

boundary layer to free-stream temperature, T, is the ratio
of temperature at. the solid surface to the free-stream tem-

perature, and co is the value of c (the ratio of phase ve-

locity of disturbance to the free-stream velocity] for wfich

(1–2k)t2=0.5L30. The functions V(C) and A(C) are defined as
follows :

where

( *,g)T nondimensional distance from surface y

4. On the basis of the stabiIity criterion in conclusion 3
and a study of the equations of mean motion, the effect of -

adding heat to the fluid through the So~d s~face “is to .=

reduce R%=~ti and to destabi.li~e the fiow, as comparec~ ‘~th

the flow over an insulated surface at the same l~ach number. .. . .
~I&dra~g heat through the solid surface has eRactIY the

opposite effect. The ~alue of R~~=ti for the laminar bounclarj-

layer flow over an insulated surface decreases as the
Mach number increases, and the flo~ is destabilized, as

compared with the Bkisius flow at low speeds.

5. V7hen the free-stream velocity is supersonic, the lami-

nar bounclary layer is completely stabilized if the rate at.
which heat is withdrawn from the fluid tiough the solid __..

surface reaches or exceeds a certain critical value- The ____

criticaI rate of heat transfer, for which ReC,mk-+ ~, is
d ()(in

that. which makes the quantity ~ P ~y sticiently lmge

negati~eIy near the surface so that II –~Mc)l ~’(~)=0.~~0.
-when c=co=l—l~. CaIcuIations for several supersonic

Mach numbers bet~veen 1.30 and 5.00 show that for MO>3
(approx.) the critical rate of heat withdrawal for laminar
stablity is within the order of maadtude of the calc~at@ __
rat e of heat conduction through the solid surface that bal-
ances the heat radiated from the surface under free-flight
conditions. Thus, for .110>3 (appro~.) the laminar boundary-
Iayer HO-Wfor thermaI equilibrium is completely stabIe
at all Re.ynolck numbers in the absence of a positi~e (adverse)
pressure graclient in the clirection of the free stream.

6. Detailed calculations of the cum-es of m-aye number
(in~erse -wa~e length) against Reynolds number for the
neutraI boundary-layer disturbances for 10 representative
cases of insulated and nonindated surfaces show that also
at subsonic speeds the quantitative effect on stability of
the thermal conditio~ at the SOfiClsurface is ~fw Iarg$-
For example, at a >Iaeh number of 0.70, the value of Rs,, ~,=

is 63 whe~ T1= 1.25 (heat added to fluid), R~c,rnti= 126

when T1= 1.10 (insulated surface), cmd R~c,n~=5150 when

T,=O.iO (heat -withdrawn from fluid). Since R.. = 2.25R/,
the effect on R..c,%iR is even greater.
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7. The results of the analysis of the stability of Iamiuar
boundary-Iayer flow by the linearized method of small per-
turbations must be appliecl with care to predictions of
transition, which is a nonlinear phenomenon of a different
order. Ilrithdrawiug heat from the fluid through the solid
surface, however, not only increases Rg,,m~mbut decreases

the initial rate of amplification of the self-excited disturb-

ances, which is roughly proportional to l/l/Rff,, ni~; addition

of heat to the. fluid through the solid surface has the opposite
effect. Thus, it can be concluded that (a) transition is
delayecl (Rffi, increased) by withdrawing heat from the fluid
and advanced by acIding heat to the ffui~ through the soIicl
surface, as compared with the insulated surface at the same
hlach number, (b) for the insulated swrface, transition
occurs earlier as the Mach number is increased, and (c) when
the free-stream velocity is supersonic, transition never
OCCU]Sif the rate of hea~ withdrawal from the fluid through
the soIid surface reaches or exceeds the critical value for
which R8$r~t~+ ~. (See conclusion 5.)

TJnlike lmninar instability, transition to turbuIent flow in
the boundary layer is not, a purely local phmomenon but
depends on the previous history of the flow. The qutintita-
tive effect of thermal conditions at the solid surface on
transit ion clepends on the existing pressure gradient in the
direction of the free stream, on the part of the solicl surface
to which heat is appIiecl, ancl so forth, as well as on the
initial magnitude of the clisturbanws (level of free-stream

turbulence).

.4 comparison between conclusion 7 (a), based on the

results of’ the stabiIit y analysis, aml experimental investi -

gations of the effect of surface heating on transition at low

speeds shows &at the results of the present paper give the

proper direction of this effect,.

8. The results of the present study of Iaminar stability
can be extended to include laminar boundary -Inyer [1OWS
of a gas in which there is a.pressure graclient in the direction
of the free stream. AIthough further shdy is required, it
is presumed that onIy the Iocal mean }’cIocity-tcJ1lI}c’r:l Ilure
cIistribut-im determines t$e stability of Lhe local boundary-
layer flow_ If that shouId be the etise, the cffoct of u pressure
gradient on laminar stability COUIC1be easily calculated
through its ef!eci on the local clistribution of the product
of mean clensity and mean vorticity across the boundary
layer.

I}’hen the free-stream velocity at thu” edge” of tk: bound-
ary layer-- is supersonic by analogy with the stabilizing
effect of a withdraw-d of heat from the fluid, it is expcc[ cd
that the lami nar boundary-Iayer fIow is compkt cly stddc
at all R.?ynolds numbers when the negative (favorable)
pressure gradien~ reachw or exceeds a certain critical value
tllfl~ clepends only on the Mach number am] k prapertics
of the gws. The laminar boundary-layer flo~v over a surface
in thermal eclui~ibrium shoulcl be completely S(abk for
JMo>Msl say] where Ms<3 if tkrc is a negntivc p rrssurc
gradient in the direction of the free stream.

~~ivGLEY llEkIORI.4L .AMRONIiUTICAL LL4B0RAT0RY,

JN~TIONAL ADVISORY CIORiW~TEE FOR AERGN.i UTICS,

LANGLEY FIELD, JTA., September 5, 1946.
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APPENDIX A

CALCULATION OF INTEGRALS APPEARING IX

h order to ca]culate the limits of stability of the laminar boundary

THE INVISCID SOLUTIONS

layer from relations (21) to (29) between the values

of phase velocity, w-aye number, and Reynolds number, it is fist necessary to calculate the ~alues of the integrals Ki,

Hl, Hz, LV1,Mz, .TZ, and so forth, which appear in the expressions for the in-riscicl solutions p,(g) and pi(y) and their
derivati~’es at the edge of the boundary layer. These integrals are as follows (equatiom (13), (9), ancI (10)):

and so forth.

Terms of higher orcler than a3 in the series expression for m and K, are neglected. When a<l, the error inl-olved is

srmdl because the terms in the series cleeline like ~~. Even for a> 1, however, this appro.ximatio~ is justified, at least

for the l-alues of c that appear in the stability calculations for the 10 representative cases selected in the present. p~per,

&&lk-l “’l’ip’i’[’ by
For example, the ]eading term in R. P. ,Vti~,(c), trhere L=2,3, . . ., is approximately ~

the IeacIing term in R. P. .Vs(cl. The quantity iu the brackets is at most 0.12 in the present. czdculations; for example,

R. P. ~~,(C) =0.06 R. P. Il:,~C]. Jloreoyer, R-. P. Ak(e) = (1—c] R. P. .Yti~,(c). SimiIar approximate relatiom exist

kwtwee~ R. P. .ll~k(c) and R. P. M(c); and, in addition, R. P. .113(c)= (l—c) ~ R. P. ~T3(c)==0.015 R. P. ;~~(c), at most. -

The only integral for which the @aginary part is calcdated is K (c). .lt the end of this appencIix, it is shown that
the contributions of the irnagimary parts of Hj, 313, and .Tz are ne.gIigible in comparison with the contribution of I. P. K*(c).

GESZRALFLAX OF CALCULATION-

The method of calculat iou adopted must take into account

d dw
(jthe fact that the -ralue of ~ p ~ at. the point g=y,,
\

where W=C, strongly influences the stability of the laminar

boundary layer. .iccordingly, the integrals are broken into

two parts; for example,

I
=li*L(c)+ K-,.(C) –M,~

where yf>y,. The integral K,,(c), which involves

[:(491.=:
is calculated very accurately, whereas X&(e)

i
is calculated by a more approximate method as foIlows:

I

(Al)
I

This integral is evaluated as a power series in c. The velocity

profile w(y) is approximate{ b-j a parabotic arc plus a

straight-line s~~ment for purposes of integration. h the more

complex integrals F7?j M3, and & the indefiuit e integrals

point numerical integration by means of Simpson’s rule.

The dues of to(y) are read from the velocity profiks of
figures 1 and 2. The -iaIue of ~j–~~= a is 0.40 in the present
series of calculations; this value is chosen so that. the point
y= yf is ne~er t00 cIose to the singydarity ai Y=YP Take

(.%2j

sThe integraI k,,(c), or the indefkite integral J ~, dy
* ~, (w—c)

that appears in Z, M,, and hr,, is evaluated by expanding

357
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the integrancl in a TayIor’s series-in y—y, and then integrat-
ing the. series term by term. The path of integration musti
be taken below the pointi y=y, in the complex g-pkme,

Instead of calculating the values of the velocity and tem-
perature clerivatives w,(~j and ?’.(”) dircctIy, it is simpIer
tio relate these derivatives to their values at the surface by
Taylor’s series of the form

The derivatives at the surface WI(,1)and Tl(~l are calculated

from the equations of mean motion (appendix B).
The in tegraI KII (c), for example, is finally obtained as a

power series in y,–yl=a and in Yj–y,=a–u, pIus terms
involving log 0-. The phase velocity c is related to a by

where

#jk=w$

Terms up to the order of a5 are retained in order to include

all terms involving wl” i‘,

DETAILED CALCULATIONS

In order to illustrate the method, the evaluation of K, (c)

is given in some detail, as folIows:

(I) Evaluation of K,(c):

K, (c)=
J

‘Y’ T
~,m dy —M2

(a) Define

svi T
K,,(c)= —

,, (w–c)’ ‘~
Now

T --
(W:CP=(W,’)’(?H,)’V

where

W=l+k (2/-?/,)+–&;(y–y,)’+ ...

The function $ is cleveloped in a Taylor’s series around the

point w= c as follows:

$=($),=,+($)’T “(Y-W)’+ . . .
(y–Ye) +(p), 2!

(k-l-l )

*C(’)= (kw~I) W,’
Then

– “-’”’(y-yc~[($).+($I( y-’,)+J
Kil (c)= (w:/)’ ,,-,. (y–$/J

T “(y-y,)’

0~c ~! +“”
1

()
,~y!f,

‘rzpc [(yf–lJc)J–(?J,-7JC)’]+ . . ,

T (k+l)

()+(EJ+l!) ~ . [(Yj–’Yc)k-(yl-?/c) ’]+< . ,
}

where
yl—y, =lyl —y,le-tr

y,—y,= (?J,-yJ— (yc—yJ =a—c

U=yc—y[

(?
(k)

The coefficients —
@

are expressed in terms of derivatives

of T and w at y=~l as follows:

Define

fo(!/)=-&

[(-)1
_fk(Yc)= (W,9’ (L)m ; ,,

fk’’tw)
=~k(Yl) +.fk’(Yl) (YC–Y1) + -jr (Ye–w)’+ . . .

(The method acloptecl for the ccdcuktion of fkn(y,) from (he

velocity and temperature derivatives wlc~j and T, ‘~~ is givcu

at the encl of this appenclix.)
From the expression for K,, (c),.—

1, P. KI, (c)=l. P. K,(c)

=~fl (tic)

[
‘z fl(yl) +afl’ (?/l) + . . . +: -fIv(YI)

1

and

R. P. ~ll(C) +#--=Co+C,@+C@2+ . . . +c~d+

[
& fo(YI)+ufo’(YIJ+ . . . +

w}]ere

a=yc—yI

8.= af2(y1)+ a2j3(y1)+cz3f4(yJ + a4f5(yJ -+-a5fa(yl) + . . ,
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s3=~[af,’” (w)+a73’’’(yl)+ . . . ]–

+ [3aj,’’(yl)+ . . . ]–[4a~,’(yl)+ . . . ]+

[5af,(yl) + . . . ]

.4+1 &
d~=–* (j-+ I)!

(CZ*=l.0)

((l= o.40)

(b) Detlne

J

‘u
h’,,(c) = ~, dy

,, [w–c)

r1.0 T. —, d(y–yl)
. n.w (W—c,)

=~a,(l+l)c’

w-here

The velocity profiIe w(y) is approximated by a parabolic

are in the interval 0.40 ~y—y~ = &I—~l and by a straight

line (w= Constant. =w(yJ) in the interml ys—yl =y–yl <1.0.

The ~-aIue of y? is determined by imposing the conclition

that the area uncler the parabolic-arc straight-line

segment equals the area under the actual ~elocity profile

W(Y) in the interval 0.40 =Y—LJ1 = 1.0. The paraboIic

arc w= 1+ rn(Y—YI) + n (Y—VJZ is determined by the

following conditions: n-hen Y=v4< 1,

W’=o

when y=yj and ~j—yl=o-~o;

where ~~~(yj) is read off the velocity profile of figures 1 and 2.

The value of Y4 is chosen so that the parabolic arc fits the

velocity curve w(y) closely over the widest possible range.

l-or G= 1,

and

lk is e-raIuated b-y approximating w(y) by a parabolic arc
as follows:

[

m+2n(y—yl)

1

r3-91+1*=– (&l [1+m(y–y,)+n(y–yJ’]’-l mm

where .4=m2—41n.
As a control in the calculation of the series expression

~ ak(k+ l)c’ for Ar,z(c), use is made of the fact that, from
k=o
the definition of 1~ and J~,

Lim (1.+ J,)=
1

k—m

[1

~ ‘W’(~j)
— [W(gf)]k
W Q/j)

and therefore

()

a~~l lk
lim — –-—

k—- a~ —W(.yj) k+l

The remainder after ATterins in the series for A“IZ(c) is gi-ren
approximately b-y

~(~1’+ 1) term]

[’-%1

The real part. of K,(c) is obtained by combining the r~snlts

of (a) and (b); that is,

(2) Evacuation of H,(c):

The integrand of this integral is free of singularities in the
region of the complex y-pIane boumled by y=yl and y=~;
therefore, 271(c) is e-raluat ed by pureIy rmmerical int egrat ion.
The actual procedure employed for the calculation of in-
tegrak of this type is as folIom-s: (The integra~ HI(c) serves
as an illustration.)
(a) Define
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where
,—

and
,—_—

(b) ~TTitll tlle3pproximation tllattl leviscosiiy}- ariesIinearIJ~

with the absolute tempcrzturej the veIoc.ity w is the same

function of the nonclime.nsionaI. _stream function f as in the

Blasius flow; that is,

W=w(f-) =wB(f) .

where f is defined by the rektion d~=pw dq (appendix B).

From these relat ious .

SiIICC. (i{=wB dqB. Jforeoyer,

(iq=---&=T(wB)d~B

wh e~e

[ 1.
T(W.)=T, – (T1–l)–~Mo’ w.–% Alo’w.’

for Cr=l.

(c) Finally, from the relations given in (b),

(J J
13,(c)=; : WB’CL?B-2C :0 w. CL?.+c’

)

l—~
where bOis the value of 8 /’_~ for the Blasius flow. For

\ ~(,,x:

the insulated surfaces, /10,which is somewhat arbitrary, was

(:hosen zs 5.60; whereas for the noninsulated surfaces,

bO=6.00. (The value of wB at ~B=5.60 is 0.9950; when

V~=6.00, WB= 0.997-5, The value of b for the insuIated
surfaces is the vaIue of ~1at which w= O.9950; ~ihereas b for
the noninsuIated surfaces is the value of .T for which
w=0,9975. ) The advantage of this procedure is that the

“’b@

integrals
J

wBndTB are calculated once and for all and the
o

value of ~1 (c) depends only upon the values of b and c.

k fact,

J

bo

( *,/~)B-(~\/-)B=bo-239~~
WB2d~B= ba— 6

0

since

(’*@B=’.’30

and
!— 1—1

AIso,

sbo

WBdqB=bO—1.~30
.0

and

SJ
b= : dq= “b’TdVB

o

=bO+l,73(T,–1) +0.6667 y~~lIo’

[ 1
‘—1 Ml)z +2.3967 ~;-l M02=bo+l.73 (T,–1)–~

See appendix B. (Incidentally, the lasL rclatiol~ shows the

eflect of free-stream illach number and thermal conditions

at the solic] surface on the “thickness” of the. lx-lllndary
layer.)

(3) IZvaluation of ~,(c):

H,(c) =
J

Vz T— ,~fo2(w—c) 2

-J

Y(u>—--c)~

(W–C)2
dy -7,=- dy

n $’1

Define

(a) The integral ~,,(c) is evaluated by methwls similar to

those aLre&dy outlined for the evaluation of 111(c). TII us

where

exprcssiori for H22(c) are evaluated

using Simpson)s ruk.

@# dy

J
H,,, (c) = ‘i T ,dy

J
u @#C&

,, (w–c) fi,

J
H,,,(c) = ;: ~w-:aj dy~: ~)-’ dy

1
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The integd Hzlz(c) is evaluated as follows:

@# dy

Define

wk?re

and

[ 1
T= T, – (T,– 1) –T~~I/ U)– q.ll#w’

The integral ~(c) is e-raluatecl by numerical integration using

Simpson’s rule: the required values of w are read directly

off the velocity protles of figures 1 and 2. I?hally,

H,,,(c) =K,,(c) H,(c) –P(c)

The integral H2,1(c) is e-raluat ed in exactly the same way zs

KI, (c) -where
[W—C)2—= (WC’)2(Y–YC)2 ($)

T’
and

4(!/) =l+W+,(M +“&k?/c)’+ “ - “

R. P. [HZ,,(C)]= (boay+coa~+doa~+noa~ +

h~+j(’’;-j2-

T1’ ,1” ,
‘3–2A’ z– T1 ‘2

,1’ 2

(-)1,1
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.-lk=w~

At’’ =Ak+1’—A2AA2—Ak’Ak (2~k~5)

Ak’’’=Ak+l° –A2.4h’’–2Ak’A2 ”Ak2”Ak (2 s ks4)

.Clki’=lik+l’ ”-. $J4 A~’’’—3A~’3A~’– 3A~’A2~ff A~’ffA~
(/?=2, 3)

At’’= A~~1’’—A2Aa4A~4 A2’6A2’’—6A2’’At”-

4A2’’’AA2~AAk’Ak (k=.2)

B7(m)=Ai+1(m) —Ai(m+l)

B7=A3’

BT’= 2AaA3’

B7’’=2(A3’)2+ 2A3A3°

B8=.Q4,

B~’= A~’AA+ A~A~{

Bg= AL’

B,0=A3A5

l?inally,

R. l?. 172(c) =R. P. FZ211(C) +~21z&-Mo2&z(c)

(4) Evaluation of M,(c): .

.lx~(c)=
J

V2(w_c)2
u~ dy ; &

)S
—M02 dy ‘@#dy

VI ih
=.uj, (c) –-M,’M3,(C)

where

and

4rw’d’”1:1’TwB’’Bd’~--
2c3(flW.dq”~:TqBdqB+

J3f..l’ )
Tw, d~, dq, +

JJ
C’ bodq~ b’TqB d~B

(1 lln

where b. has the same meaning as in the evaluation of Ilzz (c)
and where

[
7—1 ‘

1
T= T(w.) =T, – (T,–lj –7 MO w.–% ilf #wJ

The integrals in M32(c) are evaluated by numericaI intqgw-

tion using Simpson’s ruIe. Yalues of w~ are taken from ~he

table in appendix B.

(b) For em.venience, the int egrd .1131(c) is transformed as
follows:

M3,(C)=M311(C)+313,2(C)–M3,,(C)
where

.313,,(C)=
J J

‘i W dy “ -~
s

‘J (W—C)2
Y1

~dyy (w—c) $fl T-dy

s J
“ ‘~g~ dy ‘2~

J
~ (w—c)~11312(c) =

lil ,, (w–c) 2‘lY ,, ---F’- ‘~

m,(c) =J,
J

“ *T@ dy “ –—
,, (W:c)’ dy,[ ‘%2 ‘~

It is recognized that

J

L!(W—C)2
~ dy=H, (c)

gl

J

u
,, &2 @~: ‘K;cr @=~~2,2(c)

Thercfom
Mg12(c) =~1 (cj_Hz12(c)

By additional transformations, the. following equations are
obtained:

M3,,(c) =H, (c)P(c) – Q(c)
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where

Q(c) =
J J

““ @#’ dy ; & dyJ” @# dy
Yi f

or

The integral Q(c) is eduated by numericaI integration
using Simpson>s ruIe; P(c) is e-duakd in the calculation
of H22(c).

The integraI M~,I (cj k obtained in exactly the same -way
as KIL(c) and H211(c); that. is,

are

‘2J)JWJN

The integrak in .iV~A(c)are evaluated by mmnerieal integration

in a manner similar to that usecl in the evaluation of M3Z(C),

and so forth. Most. of the integrals wiI1 already have been

evaluated in the calculation of ~l(c), lZZZ(c), and M&(c).

(bj For convenience, Na2(cj is broken clown as foIIows:

J

~’ T

s

r-(w-- e)~
1?’32(c)= — —

~, (w–c)’ ‘y ~, T “’-y)dy

J

9i
.

,, &#yJ?# @-@d~+

s
~ dy

J

f (w—c)’
;’ (w–c) ,, T ‘~’–y)d~

Let
N3j (c} =.N321 (c) + 11522(c)— 41T323(c)

where

1’

Y,
llr3zI(C)=

=2 dg ~ (W–C)2~ k-y)dy
._ w L1

J

1!

J

~%fw—G~2
ti322 (C)= ~j +2 dy y, ~ (Yz–y)dy

N3,3(c)=f: a dyf’ %#’ (yz–u)dy

NTOW,

N323(c)=l“ ~, dy
J~ : (’w-c)- ,“ ‘;< [(Y2–Y1) – (y–yJldy

Since y,–y,= 1.0, and

J
P(c) = ,: &, dysy’ @# dy

Y

it. is found that

N323(c) =P(c) —PI (c)

where

J
P, (c)= ‘*—

s
“ q (?4-Y1) dy

Fi (W:c)’‘y ,

s
b T

—, G, (q;c)dn
‘; o.,~(w–c)

and
‘b ~2

G, (?j’;C) =

J J

“b ? dq
,Tqdq–2c b?

J
, ~qdq+c2 —

,T

PI(c} is evaluated by numerical integration using Simpson’s
rule. Define

J

h
.i\$22(c)= ,, &zdY~Q~@ ~(YZ-YI)-(Y-YI)] dy
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Since

J

v?
~i & dy= K-,2(C)

and

\

‘W (W)-C)2
~ dy=H, (c]

. u
it is recognized that”

N,,,(c) =K,,(c) [H,(c) –,~ + (+iq

FCIR AERONAUTICS

J

V2(W—C)2
4’1~ (y–u)dy=; J :“w-c’’d’lqd’=~[r’(w’-’cw)d’l””l””l

J

‘M (w—c)~
—T— (mkh=i. f/] (lbdwB:d”lB ‘d’’-’’rw’””r ‘d’”+c2J7d’’rTd’”)

The integral
(
‘“% (Y–w) is evaluated hY l~umerical integration in ~~act~y the same W~Y aS MA(c).

. 11
The integral ~S21(c) is tnmsformed as follows:

J

#i
N321(c)== ,, ##YJ:9 [(Y2-YC)-(WWC)] d,

But

J

>Yi

s

v (W—cy

,, (W:c)’ ‘y ,1 T ‘ ‘~= H2’’(c)
and

‘Y2-?/c= (W-yl)-(gc-w) =1–0

so that
N,,,(e)= (1–U)E?2,1(C)–JR,(C)

where

& dy
s

Y (W—c)f=J2,,(4=J; (w–c) W—T (g–y.)dy

Theintegral J,,, (c) is evaluated in the same way as .&,( c).

Thus

[<+”’(-$’”)l+’’ f=)[*;#a’+”’(-E,m’” 4 {m IM,l)lz f)l+/2a’+’4c”-

4 jl(y,) +~ f,’ (?/1)_jl @M1’ (YJ 1
R. P. ~,,1 (C)=+r ~

[ 1(
–~2–4a300+a4(5Do+ @ +a2 :+6a2co– 10a3~0–4a3d,

)(
+ U3 ~–4aCo+ 10a’D,+ 6u20, -1-asll$+ a

)

[
a.ff_4a Ql-5a DD +UC’ –: po+~ ~o-(gl)

1 5(-:”) ___
whe~e

lflOA.
co=g–~fo(vl)

{
1 $1’ (w) _J (?/I)fo’ (m)

cl=+–~” jo(ylJ
L?O(YI)12 }

4 yl(Y1) ] 1 fz(Yl)
Do=&% jO(y,)

— ‘0 Zofo(yl)

R. P. ~32(c) =R . P. N321(c)+~T322(c) ‘AT32s(C)

J?inally
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After severaI transformations, the int egraI .LVS,(c) k brought into a more con-renienfi form

The integral

been performed.

The integral

Li,,,(c) is e~aluated by numerical integration using Simpson’s rule. Some of tie iutegrat ions have already

The integrzal is. given as

N,,,(c) is e-raIuated in exactI-y the same way as KI~(c); that is,
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F=-p,fI (y,)+ gofo(w) –; fdw)

EVALU.4TION OF fkcd

The functions -fk@’j(y,), which appear repeatedly in the
evaluation of the integrals Kl(c), H1 (c], and so forkh, are
evaluated in terms of Wl(k) and Tit@ as follows:

[()1
fk’’(?h) ~’+ . . .T ‘ ,,=fk(YI)+fk’(3h) a+~“f’~’=(wc’)’:– l)J! ~

fo(~)(YJ = – (Tgo)vl(’@

[
nz(m—-l)T1(nz-2)g2+...+=–T1(’@go+mT1@-l)gl+ ~1

~!

(m–r)!r! 1
TI@-’lg,-f- . . . + Tlg., (Os?nsq

where

g“=&’

g~= — 2g@4j

g,= - 2(goA,’ +91Z42)

. . . . . . . . . . . . .

9?n=-2[90~2(m-1)+ (m—l)gIx42@–2)+. . .+

~~!~j !r! 9T~2(m~’-’) +; . .+9m_~AJ

( )
~I(m)(YJ = T’go+~ g,T ‘m)= (T’gO)vl@)+; (g, T) ,IOZJ

q

(0s?72s5)

f2(m)(y,)=+ (T’go) ,l(m~’)+; (Tgo&) u,(m) (os?ns4)

where

; (~90s2) VI“n)=--; [jok’1) ~zl,, ‘m)
and

&@)=: B2(k~—; &@} (osks4)

( )
f3(n)(Y1)=~ T“’go+: T“gl (w+* (T’90S,)U @J_

VI 1

& lYo(!A)s31,1(~) (os7ns3)
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~6m=~8w —+ ~i(t+l)

P,=B,

C,= A,A,A,

m~)=w+ (72@’fi~

D3@)=; (zc’,(~~+ c.(~~— ca(~+~))

(E}+ (&(a_~z(w))D4C’)=$ (2C,

~,(k)=+ (~c,(~)+ ~,(~1– p,(~+u)

E2(~)=D3@)_+ ~2(k+I)

~z(k)=l 3~5(k)+~4(k)_~3 (E+I))~ (’

Fzc~)=Eat’j –~ ~(~+)

ORDER OF M.4G>TTKIDE OF 1MAGINAR% PARTS OF ISTEGRAIS H?,
.11:,AN’D Xz

In the detailed stability calculations the contributions of
the imaginary parts of the integrak .HZ,M~, AT~,and so forth,
to the function u(c) are considered to be negligible in com-

parison with the contribution of the imaginary part of

K’, (c). A. calcuktion of the orders of ruaetit ude of I. P. n,(c),

I. P. J12(c), and I. P. ~Wa(c) from the general expressions

gi-ren in the preceding pages shows that this step is justitled,

at ~east for the values of phase velocity e that appear in the

stability calculations.

For example,

I. ~. ~,(c) =T. P. ~211(C) =zA(wC’)~, (gc)

where

A=––*- —
32-’. (%:’) ’+0(’4)+ ---

Therefore

I. P. H,(C)
2

= ‘~~1 (~c)T,(u,,,)

The contribution of 1. P. ~z(c) to u(cj is approximately equal

‘oo’[f&)l’wh’re r”=%l-p-K’(” ‘Lequanti’yh
the brackets is of the order of O.O3,at most, in the caIcuktions
of the present paper. (In the approximate calculations of
Rg~,minfor Mach numbers very much greater than unit~, c

becomes large because c> 1—-$0; however, a is smaIl when

c is not much greater than 1—& and the results of the

calculations of Re=,~t~ based on the approximation

~(c) = T* I. P. K,(c) are qualitatively correct (fig. 7).)
I

From the expressio~ for i$’z(c),

1.P. .iV,(c) = c’ I.P. K,,(c)
2 (25,’)’

so thd the eontribut io~ of I.P. .i17s(c) to o(c) is approsi-

[1

~’2c2
mately equal to U. — - The quantity in brackets is of

2(.W,’)’
the order of 0.06 ab the most.

The imaginary part of .lf~(cj is considerably smaller. In ftict,

c’
1.P. ~~,(C) =9 Tl,(w,~)~ r.P. K,(c)

and the contribution of I.P. Ma(c) to u(c) is approximate eIy

‘qualtO’&%:)21-
The quantity in brackets is of the

order of 0.001 at. maximum c.



APPENDIX B

CALCULATION OF MEAN-VELOCITY AND MEAN-TEMPERATURE DISTRIBUTION ACROSS_ BOUNDARY LAYER ANI) TIW
VELOCITY AND TEMPERATURE DERIVATIVES AT THE SOLID SURFACE

The mean-veIocity ancl mean-t empe.rature profiles for tlIe
several representative cases of insulated and noninsuhited

surfaces are calculatec~ by a rzpid approximate methoc{ that

gives the slope. of the velocity protiies at the surface with a

m~ximum error of abou~ 4 percent in the extreme case, for

\vbich ~1= 0.70 and JWO=0.70. Tkw surface \ralues of the

]]igher ~’elocity derivatives and t]] e t emperat,ure ckwivatives

required in the stability calcul.ations are obt~inecl directly

from the equations of mean nlotion in terms of the calculated

vctlue of the slope of the velocity profile. The l’randtl

number is taken as unity.

MEAN VELOCITY-TEhlPERATURE DISTRIBUTION ACROSS BOUNDARY

LAYER

In a seminar held at the California Institute_ of Tech-
nology in 1942, the present author has shown that a good
first a.pproxima tion to tke mean velocity distribution across
the boundary lciyer is obtained by assuming that the vis-
cosity varies linearly with the absolute temperature. TVith
this assumption, the velociby w(f) is the same func Lion of

@
the nondimensional stream fun-ction f= ~_— as in the~vo*~*~*

Blasius case, and the corresponding distance from the

surface q=y* /–~ is obtained by a simple qu adrat.ureJ T;*

when o-= 1. Actucd]y, the approximation w(~) =w~(r) is
the first stage of an iteration process appIiecl to the differ-
ent ial equations of mean motion in the Iaminar boundary
Iayer, in ~vhich Pm T~-’ (e is a small parameter equcd to 0.24
for air), and w(f) =w~(f) + WJI({)+ e%o(f)+ . . . CaIcu-
Iation of WI(() for T,= 1.50 and TI = 2.00 for MO~O showed
that the iteration process is rapidly convergent; the con-
tribution of the second term to the slope of the veloc.i ty
profile at the surftce is 5 percent for TI = 1.50 ancl S perceni
for TI =2.00. In the present calcuktions the maximum
error in the slope introduced by taking w(~)= WB(f) is ~bout
4 percent in the extreme case. (See reference 15, in which
the authors make use of a linear l“iscosity-temperature
relation, See also reference 23.)

That w(~) =w~(() for a Iinear variation of viscosity with
absolute temperature is seen directly from the actuations of
mean motion in the Iaminar boundary Iayer. The equtition
of continuity is aut omatica}ly satisfied. by taking

F - a**
= ‘“”=~Po*

368

and

The st~eam function ~* and the (distance along [he. surfticc
Z* are selectecl as inclependcni variables folkwing the I]ro-
cedure of Von- Mkes, and the dynamic equation d m(’a.n
motion becomes for zero pressure gradim~

Define the nondimensional stream fllnction ~ by the relatiorl

r=~+!l;->.The dynamic ecfuation takes Lhc following

form:
—

. .

Since p= ~ in the bounclry layer, if p= T} the dynamic cqu a-

tion in this form is identical with the cquat ion fur thc
isothernlal BIasius flow, tha.~ is w(~) =w~(~), or the va]~c of

the velocity ratio w is equaI to the Blasius value mt tbo same._—

value of_~. The cor~esponding value of ~=Y* J$; ‘1”

nondimensional ~‘dist ante” from the surfzce} is Obttlined as
follows:

or

If c= l,--the energy and dynamic equations have a. unique
integral gad

as shown by Crocco. Therefore,

But-w(r) = w~(f), cind
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J

~B

[

*8
The integraIs WEd~B and u’~: dqB are gi_ren in the fol-

lowing table, ;;]d the mezm-;~locity and mean-temperature
profiles can be calculated rapidly by this method. (The

)
dues of (+% ~ are used in the approximate calculation of

R~C,~ix(appendix C).)

r=
0.02
.23
..
.:

I:%
L 20
L 40
L 60
1.w
3.00
2.21
2. #
2. m
2. S#
3. m
3.2U
3.40
3. m
3.25

I ;[

1-

5. m
5. m
6.03

l.?x

o.Ixoo
-0s64
, 13=

. 19s9

.2647

.3236

. 3%s

. 4x13

.516.s

. 574S

. 6LX!$

. W3

.m

.7i25

.Sm

.W

.zY61

. W18

.9233

. w]

.95.5.5

.9759

. KS

.s%2

.%

.S?W1

0.m
.mm
;g22

.01s9

.036i

.m30

.0903
~1~~

%%
.3054
.*64S
.mm
. io34
.WLL -
. %!s7
1.1478
lJi145
1..x24
L FES2
2.0419
2.422
2.8X1
3.2LS0
3.6L67

(%%
0.33m
.3319
.3314
.337x!
.3~*
.3$23Q
.3165
.3379
. 2SS7
-~~
.2563
.24s3
.222Q
.2iM
.1s25
.L61S
.L40S
.mu
.0W6
.0ss
.Cwo

Yi’ith the approximation that Y wmies linearIy with the

absolute tempe~ature, the sIope of the ~eIocit~ profile at the
solid surface is simp~y reIatecI to the slope of the B]asius
profile. Thus

and
au”

()

_o.332
~lx

Or

(h ,_ O.332 ~
~=w’– T,

where b is the value of ~ at the “edge” of the boundary Iayer
{when u’ reaches an arbitrarily prescribed due close to
unity). It is seen that the shear stress at the surface (or
the skin friction) has the same ~aIue as in the Blasius case

The reliability of this approximation can be judged from the
calculations of the skin-friction coefficient in reference 2-4,
in which p K P ’76. From fi=gyre 2 of reference 24, the vsdue
of the skin-friction coefficient for an instdated surface at. a
Jlach number of 3.0 (T, =2.823) is only 12 percent loWer

than the B1asius -ralue anc~ onIy 2 percent lower at a 31ach

muaber of 2.0 (~1=1.81). For the Doniusulated surface,

-with TI=O.25, the value of the skin-friction coefficient zt..

~10= O is oity 7 percent greater than the Blasius value and
12 percent, greaterat a 31ach number of 3.00.

Since the shear stress at the surface is unchanged in fist
approximation, the bounda~-layer momentum thickness has
the same value as for the Blasius flow

,-
6 /%— 0.6667
~ g,*-

The, expression for the clispIacement thickness 3* gi~es a
measure of the effect. of the therma~ conditions at the solid
surface and the free-stream Mach number on the thickness
of the boundary layer. By detition,

=1.73 +( TI—1)1.73+ ~+ M,’ (0.6667)

4 MO’ (0.6667)=1.732’1+72

For the BIasius flow

(1 )

[~
8* i~$ =1.730

B

The “thiclmess” of the bomdary lwjer b is gi~en by

b=5.60+ (~,–1)1.73+7~filo’(0 .666F)

8*
and the form parameter E?=T is

H= 2.50 T, +7~Mo2

For the iusukted surface,

‘=2-50+3-50 r+’’”)

CALCEZ.4TIONOFME~S-~ELOCITYA~D ME~h--TEllPER~TCRE
DERW~~rVES

Because of the sensititit.y of the stability characteristics
of the Iaminar boundary Iayer to the behavior of the quantity
d dw

-( )
— , the ~alues of the required velocity and tempera-

dy p dy
t.ure derivat i-res at the surface are calculated directly from
the equations of mean motion, tith P= ~~ (TA=O-~~ for air).



370 REPORT NO. 876–--NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS _.

d~ ,
LTOW—= f = bpw so that the dynamic equation is

dy

–b~w?=(pnwt)~. Since ~(0) =~’(0) =0,

w~//_– -~1 T,’w,’

where T1’= WI!
[

y—l
—2—MO*- (TI—l)

1
j if u=l. h other words,

the value of wl” is readily computed from the value of W1’.

In general, w, W) is determined from the relation

b
—j (( W’)Z–2= (plwi)k-1

or

[

mTlf (k–l)! (T~)I’’w,(, _,)+ +wl~~)= — (k—l)Twl@)+
(k–3)!2! T’lm ‘ ‘ ‘

(k– 1)! (;~)l($) T~)l(.k-l)

1
+( Tm w,’ –(k–1–~s! Tin “(’-’)+ “““ ,

[
~+fi r,(k-”’)w,’+ (k-2) ~l@3)w,”+ . . . +

(k–2)!
(k–2–?’j !r! f

(k-2 -r)wJ+l)+, . . +(k–3~(k–2)r,/twl (k-3)

1

where

{l(P) =~(pw)l(P-l)

[
=b ~@-~).w+ (~–l)pl(p-z)w,’+. . .+

_(p–l)! (H-l) wl(g)+ . . .+ P1W1(2PV

(P–!z-_~)k~ ‘1 1
p=l,2, ...5

and

pl=—;,
T1’

Q1’=–v

*[15( T,I)(T1’1)2+10(T,’) ’T,’”I+
m(~—l) lOT,~/y,/ff+5T1,T1’v]+~ ;:

T,’

(T1’)4TI”+%=(m, ~) ~+15(m, 4) T,$

(m, 3)
~ [45( T~’)2(T1’’)2+20 (Tl’)3Tl’”]+

‘m’ 2) ~60T,’T1’’T,’’’+ 15()2 Tl]v+15(TI()3]+) 3]+
T,’

‘(m-l) (j T///’T,, [1 ( , ) +15 T1’’T,’’+6TT, T]+m2~2~-’
1

(m,2)=m(m-l)(m-2)

(m, n)=m(m–l)(m-2) , . . (m–n)

m=O.76

(ml l)=–0.1824-

‘ (m,2)=0.226176

(m, 3)= –0.5066S4

(m,4)=l .641495

(m, 5) =–6.959939

T,’=awL’

~=-(—— 1~ M02-(T1-1)

TI’’=aw,’’– l) Jf#(wl()2’)2

T1’’’=aW3(y’—3 (y —I)Mwl°l’w1°

T1[v=awl’v– (7–l)Jfo2 [3(wI’’)2+4wL’wI’”]

Tlv=a-u~lv—5(T— l) MO~(2w1’’w1’’’+ti*l[~l[~

T,v’=awlv[– (~– l).?tIj[lO(wI’’’ )2+ 15wI’’w11’+ 6W1’WIV]

Each velociby derivative is determined from tl~c knowledge
of all the preceding derivatives.



APPENDIX C

RAPID APPROXIMATION TO THE FUNCTION (1– 2x) C(C) AND THE

In section 5, a criterion -was deri~ed for the dependence of

the minim~un critical Re-ynoIds number R@C,~~%on the local

distribution of mean veIocity ancl mean temperature across
the boundary layer. It was found that

-where COis the value of e for which (1 —2k)u(c) =0.580 and

=C

A rapid method for the calculation of the function (1–2k)r(c)
and the minimum critical Reynolds number is developed by
making use of the approximation that the viscosity varies
linearly with the absolute temperature (appendix 13).

(Since the eflect of ~ariable viscosity on the mean-veloeiiy

profile is overestimated in this approximatioDj the dues of

R!j.,~t~ (fig. 6(a)) cakdated by ttis method are lower than

the ~aIues calculated for P= TO-75when heat. is added to the
fluid through the solid surface and higher when heat is
w-ithckawn from the fluid.)

For p= T, the dynamic equation (appendix B) is

But

so that.

%(%)= -[i+ww
&

3fIN131U&I CRITICAL REYNOLDS NUMBER

Finally,

={#yi+N$’U\
~(c) = T12

ll?,H=c

()The required ~alues of w~, ~~~ ~? and f are obtained from

the table in appendix B.
The small correction to the sIope k(c) is easfly calculated

once the mean veIocity profile has been obtained (appendix B).
Thus

The quantity (1 —2x)u(c] has been calculated as a function

of c for various values of TI at .31. =0,0.70, 1.30, 1.50, 2.00,
3.00, and 5.00, and the results of these calculations are
given in the foIlowing table. The decisi~e stabfiiz~g

influence of withdrawing heat from the Huid at. supersonic

-velocities is frustrated in figure 7.

i O,%

11
0.1945 3550
.?’69.5 10s2

I
.3435 gj~

I: E .54.35 67
1.m .62:0 33

t [ i

~-
3f$=2.m; C>O.5W

1.63 0.5074 6il
L.65 .543S XJ7
1.m .6155 75
1.75 .6749 40
I. 8L .7275 25
1.s5 .7612 19

I M=5.CO; C>o.sm

0.70 a. 1670 I 3u5
.30 .23!23 2H0
.W ~~&- 613

1.25 .5425 74
L xl .6265 3s

.\fl= 1.FD;C>O.332

I. 3a o.34% m
1.35 .%%5 275
1.lJ ..5505 ‘w
1.45?6 .’226 49
L60 . i732 16

f I

X*=3.53; C>O.W

2-+s 0.67’W\ ,=
z 32
2.62 :%3 24
2.72 .Sllxl 14
2.ii .S295 10
2.*5 .%m 9



APPENDIX D

()BEHAVIOR OF ~ Pdx FROM
dy dy

EQUATIONS OF hfEAN MOTION

In order to determine the effec&_of free-stream Jlach
nllmber, thermal conditions at the solid surface, or
free-stream pressure gradient on krninar stability,
it is necessary to know7 the reIation between these
physical parameters and the clistribution of the qusmtity

solid surffice is obtained clirectly from the dynamic equation

‘()(equations (74) and (79)). The value of -$ p% at the

surface} which is ako useful in the discussion of la.minar sfia-

bility, is obtained from the dynamic and energy equations

as f OIIOWS:

wlf!’ 2WIJ’TI’ wl’Tl” +2wI’(T1’)’
‘~– T,, -- “-T,’ ~~-

Diffwentiating the dynamic equation once yieIcls the result

At the soIid surfme the rate of change of temperature

d ‘~
~ and the mte at which the work is done by pressure

— b? both Vanishj and tbe rate at which a fIuidgradient U* —
dx*

element loses heat by conduction equals the rate at which
mechanical energy is transformed into heat by viscous
dissipation. The energy equation becomes

or
(T,’)’T,’’= –a(7– I) Jf,,’(W1’)2-m ~<0

Utilizing the expression for WI”’ and Tl” gives

[HalI=-2’m+’W$G)ll+

(W[’y
u(l+m) (Y—l)Jl&z ~

where

[W)11=-3P1’”1’-+5%

From ibis expression for
[$G)I1

the following con-

clusions, which are utilized in the stability analysis, arc
reac~~ed:

‘hen[$($)ll ‘anis”es ‘heq’’an’ity[$G)lLis”iu
positive.

When the free-strewn ~elocity is uniform,

[$ G)ll-

(W,’)’ (T,’)’
—a(l+?n)(y-l)flloz 7Ff7+2(l+7n)2 ~ I’M’

‘ha’is[$G)lli’al’vays~’ osi’”” ~
When the surface is insukted,

‘nd[$(al,
is alwzys positive, regardless of the pressllrc

gradient.
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APPENDIX E

CALCULATION OF CRITIC.4L 31ACH NUMBER FOR STABILIZATION OF LA?rflNAR BOUNDARY LAYER

For thermaI equilibrium the rate of heat. conduction from
the gas to the solid surface baIances the rate at which heat
k radiated from the surface. If the rate at which heat is
w-ithdran-n from the fluid reaehes or exceeds a certain critical
value at a given local supersonic lIach number! the laminar
boundary-layer flow k stable at all Reynolds numbers.
(See section 6B.1 The purpose of the following brief calcu-
lation is to determine the equilibrium surface temperatures at.
severaI Mach numbers and compare these temperatures with
the critical temperatures for Iaminar stability. (See fig. 8.)

Rlen the solid surface is in thermal equilibrium,

where Eis the emissitity, ~ is the BoItzmann constantj and
the other symbols ha>-e already been defined. (See refer-
ences 14 and 15.i Consider the case in which the free stream
is uniform ancl the temperature is constant along the surface.
For cr=l,

-=ho’.w-here stagnation temperature T. equals 1~ ~1-Y

r=UT 0.332.
~ d the approximation p= 7’ is.&lso (-$)1=3 ~ =X. ,

empIoyed. (See appendix B.) Since~=c,2~l=c.~Tl,

Ti%en the integrations in equation (El) are carried out, the
foIlo~ing relatio~ is obtained for the determination of the
equilibrium surface temperature:

u-here

The equilibrium surface temperature under free-fight
conditions is affected principa.IIy by the variation in density
~ with altitucle h. The results of calculations carried out

for altitudes of 50,000 and 100,000 feet are given in the

following table:

E~~ * 7=” “

In this table,

“-T’”=(”’+‘“z
where

Q heat withdrawn from fluid per second per unit width of ._.

surface

C1 skin-friction coefficient for one side of surface

R=–’%

L l~~gth of surface

T,* free-stream temperature

k~ heat-conduction coefllcient of gas at free-stream tem-
perature

In these calculations the foHoi~kg data are used:
e=o.~(l

L=2 ft.

~=400° F abs.
~=~.~o X 10–13B~u/sec/ftZ/(OF abs.)~

c~=7.73 Btujslug/YF abs.

~=3.02 X 10-7 slugs/f t-see

~= 9S0 ft/sec

~=3.61 X 10-g s@s/ft~ at 50,000 ft
=3.31 X10-5 slugs/ftx at 100,000 ft

K=3.35 XIO-’ at 50,000 ft
=3.66 X10-S at 100,000 ft

Since T,– T,c@,r> T.—TIC, for MO =3 at 50,000 feet

altitude and for 310=2 at 100,000 feet altitude, the Iaminar

boundary layer is completely stable under these conditions.

It should be noted th%t under wiud-turmel-test conditions

in which the model is stationary, these radiation-conduction

effects are absent, not only because of reradiation from

the walls of the wind tunnel but also because the surface_ ___

temperatures are lore-generally of the order of room

temperatm-e.
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TAEILE IL—AUXIMARl” FUXCTIOXS FOR CALCULATIXC? TEE STABIL~TY
OF THE LAWNAR BOU>-DARY L.kYER FOR XONB”STJLA.TED SDRFACE
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TABLE II-.-PHASE VELOCITY, WAVE NUMBER, LLQ REY5’OLDS NIMBER FOR IJEI?TRAL SUBSCIMC DISTURB4XC?E (ST.iBILITI” LIMITS}
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